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Betting on sparsity for high-dimensional data
Ubiquity and curses of high-dimensional data
Betting on sparsity through Bayesian model uncertainty




High-dimensional data are ubiquitous

Traditional statistical paradigm:
® large number n of observations (patients, voters...),

® small number p of variables (medical measurements, answers in a
survey...).

Modern (big) data: DNA microarray n ~ 100, p ~ 10000.




High-dimensional data are ubiquitous

Traditional statistical paradigm:

® large number n of observations (patients, voters...),

® small number p of variables (medical measurements, answers in a

survey...).
Modern (big) data: NMR spectra n = 100, p ~ 1 000.
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High-dimensional data are cursed

High-dimensional datasets are collections of points in high-dimensional
spaces...

...and the geometry of high-dimensional spaces is rather peculiar.

High-dimensional Euclidean (hyper)balls are essentially empty!
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High-dimensional data are cursed

Since Gauss's and Legendre's least squares (~1810), most of classical
statistics rely on Euclidean distances, which do not behave nicely in
high-dimensions.

“All this [the problems related to high-dimensional geometry] may be
subsumed under the heading "the curse of dimensionality”. Since this is a
curse (...) there is no need to feel discouraged about the possibility of
obtaining significant results despite it.”

Richard Bellman ('57)




e __________________________________________________________________________
Betting on sparsity

Parametric statistical models assume that the observed data X € R"*P
comes from a density in a parametrized family (p(:|0))gco-

The dimension of © usually grows with the dimensionality p of the data,
which is another challenge of high-dimensional inference!

But most statistical/geometrical problems tend to disappear if we assume
that @ has few nonzero coefficients. We say that 0 is g-sparse, with g < p.

“This has been termed the “Bet on sparsity” principle: Use a procedure that
does well in sparse problems, since no procedure does well in dense
problems.”

Hastie, Tibshirani & Wainwright ('15)
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Visualizing data via PCA and the bet on sparsity

PCA aims at summarizing high-dimensional data using only two transformed
variables. Without betting on sparsity, the results are much less
interpretable.
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e __________________________________________________________________________
Betting on sparsity via likelihood penalization

A natural way to find a sparse parameter is to maximize a penalized version
of the likelihood

8 € argmaxgce log p(X|6) — A[[6]o.
This combinatorial problem lacks scalability, and is often replaced by

6 c argmaxgcg log p(X|8) — A[|0]]1.

Such optimization problems — often called lasso problems, following
Tibshirani ('96) — are highly scalable but hard to calibrate.




e __________________________________________________________________________
Since we should bet on sparsity, why not do it
probabilistically ?

The Bayesian framework allows to express prior beliefs about 8 by treating it
as a random variable. Here, our prior belief is that & might be sparse.

To translate that belief, we will use the sparsity pattern v € {0,1}” of 8,
which is the binary vector that indicates which coefficients are nonzero. The
number of nonzero coefficients is denoted by g.

A simple Bayesian bet on sparsity: all sparsity patters are a priori as likely:
p(v) is the uniform distribution over {0,1}”. More complex bets are also
possible.
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e __________________________________________________________________________
Bayes's theorem updates the bet on sparsity

Using Bayes's theorem allows us to find which sparsity patters are more
likely, by computing the posterior probabilities of such patterns:

p(v[X) o< p(X|v)p(v) o p(X]v),
where
p(X) = [ p(Xv)p(0]v)do.

is the marginal likelihood or evidence of the data for the sparsity pattern v.
This sparsity pattern can be estimated via maximum a posteriori

U € argmax, ¢ 0,13, P(X|V).
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Betting on sparsity as Bayesian model uncertainty

m The Bayesian bet on sparsity is a particular instance of Bayesian model
uncertainty. All possible sparsity patterns can be viewed as competing
statistical models, over which we spread prior beliefs.

® The idea of spreading prior belief between models and computing
consequently their posterior probabilities was independently developed by
Harold Jeffreys & Dorothy Wrinch (& 1920), and by Jack Good & Alan
Turing (=~ 1942).

m |t embodies the fact that simpler models are a priori pretty likely to be
useful, a philosophical principle often referred to as Occam’s razor.




e __________________________________________________________________________
Two main challenges tackled in this thesis

The Bayesian framework provides a coherent way of expressing a bet on
sparsity, and will be our main tool to study high-dimensional data. Two
main issues lie however on top of these foundations:

® computing posterior probabilities of sparsity patterns imply computing
challenging high-dimensional integrals,

® there are 2P sparsity patterns that should be tested, which appears
infeasible!




Sparse regression
A sparse linear model
Applications




e __________________________________________________________________________
The linear model: a noisy linear system

A classical linear regression problem...

Y=XB+e¢

Y € R" is a vector of n observed responses,

X € M, is the design matrix with p input variables,
€ is a stochastic noise term of finite variance.

Goal : estimating 8 € RP.

...with a dimensionality issue...

n might be much smaller than p (maximum likelihood becomes is an
ill-posed problem).

...and a sparsity assumption.
B € RP is sparse (most of its coefficients are null).
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Obtaining a sparse solution through penalization

Regularizing the maximum likelihood procedure

Bpenalized = argminﬁeRPHY - Xﬁ”% + )‘pen(/@)a

A is a tuning parameter,
pen is an (often convex) function that penalizes larger models.

Examples

® pen(3) = ||B||o leads to NP-hard problems,

® pen(B) = ||B||1 (lasso, Tibshirani, '96) is fast but not necessarily
model-consistent,

® pen(B) = > %, w;|B| (adaptive lasso, Zou, '06) is asymptotically
model-consistent,

= pen(B) = a||B|[3 + (1 — «)||B||1 (elastic net, Zou & Hastie, '06) can
select more variables than the lasso,

B etc.
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A model tailored for betting on sparsity

Plugging a sparsity pattern in the linear model

Y =XB+e
B =vOow,

® g~ N(0,,1,/7) is a Gaussian noise term

m w~ N(0,,1,/a) is a parameter vector with Gaussian prior

Consequence : Spike-and-Slab-like prior on 3

p

p(Blv. @) = [ [ p(Bjlvjs @) = T] 60(8))* N (8;:0,1/c)"

Jj=1 Jj=1

(2 /a Mitchell and Beauchamp, '88)
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An empirical Bayes framework...
v, 7 and « are estimated via maximum marginal likelihood (MML) :

(9.4,4) € argmax ., / p(Y|X, w, v, @, 7)p(w|a)dw.
RP

...leads to an automatic penalization of the likelihood

The MML approach implies an Occam factor which, by penalizing larger
models, leads to an efficient model selection:

i
—log p(Y|v,,y) = EHY — Xymy|[3 4 pen(v, a, 7)

where

log o

« 2 1
pen(v,a,7) = 5 [mi3 — 5% jmlly — S logdet(:1X[ X, + aly) as.

2
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Towards scalable model selection: from discrete to
continuous...

To tackle this combinatorial nature of the optimization problem, we replace
v by a continuous parameter u € [0, 1]? and use an EM algorithm
(Dempster, Laird & Rubin, '77) to maximize the marginal likelihood of this
relaxed model.

We end up with a continuous estimate G € [0, 1]°.




e __________________________________________________________________________
...and to discrete again.

How to reverse the relaxation ?
To lead to the right model, G has to be binarized.

i leads to a path of p models

We find ¥ by maximizing the marginal likelihood of the non-relaxed model
over the path of p nested models implied by the ordering of the coefficients
of u.




Relaxation-binarization in action (toy model)

Values of @i and actual binary values of v (left) and evidence computed over
the path of models (right).
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A (short) benchmark study (p = 100, g = 40)

Highly correlated predictors with a Toeplitz covariance matrix R defined by
mr; =1forall €{1,...p},
m r; =075 for i,j € {1,...p} and i # .

Evaluation metric: the F-score allows to measure the quality of a variable
selection procedure by giving a score between 0 and 1.

18 different simulations schemes were done.




A (short) benchmark study (p = 100, g = 40)
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e __________________________________________________________________________
Predicting the number of visitors in the Orsay museum
with bike-sharing data

The "OrsayVelib" database: a high-dimensional problem

We wish to predict the number of visitors of the Orsay museum using the

activity of the Paris bike-sharing system (Vélib’).

m At each hour, the number of visitors in the museum constitutes the
response variable,

m The predictors are the loadings of the p = 1158 VEélib’ stations in Paris,

® The month of September 2014 constitutes the learning set (with n = 316
observations), and the first two weeks of October 2014 the test set.




SpinyReg generalizes better and is sparser

Ridge  SSEP Lasso  Adalasso SpinyReg
MSEx10~* 14566 144.38 132.08 159.17 127.36
Selected variables 1158 1146 167 155 45

6000 SpinyReg (MSE=127.36, nvar=45)
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e __________________________________________________________________________
SpinyReg gives more interpretable results
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Bayesian variable selection for globally sparse PCA
A framework for globally sparse PCA
Applications




Principal component analysis aims at summarizing
multivariate data

Goal: Summarize all p variables with d < p scores.

Tons of applications over the last century...
m children test results (Hotelling, '33),

® image processing, from eigenfaces (Turk and Pentland, '91) to deep
learning (Chan et al., '15),

B mass spectrometry (Ostrowski et al., '04),
® DNA microarray data (Rignér, '08)...

Many modern applications involve cases with much more variables than
observations !
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- __________________________________________________________________________________
Principal component analysis

A n x p data matrix X = (xg,...,x,)" is observed.
Goal: project it onto a "good" d-dimensional subspace.

The optimal choice is obtained by spanning the top-d eigenvectors of XX
or by factorizing into a low-rank decomposition:

~
~




(Locally) Sparse Principal Component Analysis

A n x p data matrix X = (xg,...,x,)7 is observed.
Goal: project it onto a "good" d-dimensional subspace.

But regular PCA fails when p is large (Johnstone & Lu '09). Sparse versions
of PCA have beed developed consequently:

~
o~




- __________________________________________________________________________________
Globally Sparse Principal Component Analysis

A n x p data matrix X = (xg,...,x,)7 is observed.
Goal: project it onto a "good" d-dimensional subspace.

To truly perform unsupervised variable selection, the projection matrix W
has to be row-sparse, leading to the globally sparse PCA problem:

.zg




e __________________________________________________________________________
Probabilistic PCA: a generative model for PCA

PPCA assumes that each observation is driven by the following generative
model:
x=Wy+e¢

where y ~ N(0, 14) is a low-dimensional Gaussian latent vector, W is a
p % d parameter matrix called the loading matrix and € ~ N(0,02l,) is a
Gaussian noise term.

This model is equivalent to PCA in the sense that computing maximum
likelihood estimates recovers the principal axes (Tipping & Bishop, '99).




e __________________________________________________________________________
Betting of global sparsity within PPCA

We consider the model
x=VWy+e

where V = diag(v), the matrix VW is row-sparse, leading to global sparsity.
To perform Bayesian model selection, we use Gaussian priors

wjj ~ N(0,1/a?) and chose the hyperparameters that maximizes the
marginal likelihood:

p(Xlv, 0, 0) = [ plxilv, 0, 0) = H/R p(xiW. v, 0,0)p(W)dW
i=1 /R

i=1




The marginal likelihood appears to be intractable!

Theorem
The density of x is given by

13

e 202 o0 uq/26702u2
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This kind of integral is known to be difficult to compute (Ogata, '05).
Classical Bayesian approximations are usually used: Laplace (Bishop '99,
Minka '00), variational (Archambeau & Bach, '09)...

Is it possible to play with the PPCA model to obtain a tractable likelihood ?
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-
Our solution: Probabilistic PCA a2 /a Roweis

PPCA allows to recover the principal components even in the limit noiseless
setting o — 0 ! (Roweis '98)

In order to obtain a tractable likelihood, we consider the following model:

x = VWy +Ve; 4+ Vey,

® g1 ~ N(0,02l,) is the noise of the inactive variables,
ilp
® g5 ~ N(0,03l,) is the noise of the active variables.

We want to investigate the noiseless case oo — 0.




Aparté: Multiplying a Gaussian matrix with a Gaussian
vector

A random variable z € RP is said to have a multivariate generalized

asymmetric Laplace distribution with parameters s > 0, u € R? and X € S;r
if its characteristic function is

S
1
Yu € R”, s)\U) = '
PGAL, (., )( ) (1 + %uTZu — iuTu>

(Kotz, Kozubowski & Podgérski, '01)

Theorem
Let W be a p x d random matrix with i.i.d. columns following a

N(0,X) distribution and let y ~ N(0,14) independent from W.
Then

Wy ~ GAL,(2X,0,d/2).
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Theorem
In the noiseless limit 0, — 0, x converges in probability to a random
variable X whose density is

p(X|v, a,01) = N'(%]0, 011, q)GAL4(%|2/031 4,0, d/2).

This theorem allows us to exactly compute the noiseless empirical Bayes
marginal log-likelihood defined as £(X,v, o, 01) = >_7_; log p(Xi|v, o, o1).
Up to unnecessary constants,

2
E(X,V,OZ,O']_) = _% - n(p - q) IOgO’l
1

nq -
+ 5 loga+ >~ (log Kig—ay/2(@llxvill2) — qlog [xv;l]2) -
i=1
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- __________________________________________________________________________________
Automated hyperparameters choice

For o1: what appears to work best is to simply use the ML estimator from
the ideal non-noiseless PPCA model which is the mean of the p — d smallest
eigenvalues of X7 X.

For a: if v is known, the regularization parameter can be optimized
efficiently using gradient ascent. The properties of Bessel functions insure
that the objective function is univariate and concave !




e __________________________________________________________________________
Scalable inference through a relaxed model

We replace v by a continuous parameter u € [0,1]°. Denoting U = diag(u),
and 0 = (u, «, o), this can be written

x = UWy +e.
We follow a variational approach to minimize the free energy
Folxt, - xal6) = ~Eqlln p(X, Y, W[)] — H(q)
which is an upper bound to the negative log-evidence:

—Inp(X[0) = F4(X[0) — KL(ql|p(|0)) < F4(X|6).

The relaxation is reversed as before.
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Comparisons with other methods

Simulation setup with p =200, g =20, d =10, 0 = 1.
SSPCA (Jenatton, Obozonski & Bach, '09) achives global sparsity with a

£y — £ norm.

Table: F-scorex 100 based on 50 runs

n=p/5 n=p/4 n=|p/3] n=p/2 n=p
SPCA 207 +£0.7 212+0.7 21.5+0.7 21.7+05 252+21
SSPCA 66.7 £21.4 715120 86.7+142 056+189 082%7.2
GSPPCA | 86.8+7.06 93.9+3.66 97.2+255 99.2+14 100 £ 0

The local method (SPCA) is unable to select the relevant variables.
GSPPCA consistently outperforms the global ¢; — ¢ based method.




Global versus local - breast cancer data set (n = 334,
p = 5391)

Microarray data from Wang et al. ('05) and Minn et al. ('07).

We can measure the biological significance using the pathway enrichment
index (PEI) introduced by Teschendorff, Journée, Absil, Sepulchre & Caldas
('a7).

Table: PEI for several fixed cardinalities

Cardinality tPCA SPCA GSPPCA
290  selected by tPCA 0.09 0.09 3.22
1000 1.88 1.88 4.57
1965 selected by GSPPCA 1.7 1.61 5.19
3000 116 143 3.58
4466 selected by SPCA 3.04 322 4.29
5000 179 188 2.42
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Global versus local - breast cancer data set (n = 334,
p = 5391)
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Exact dimensionality selection for Bayesian PCA
Exact model selection for PCA through a normal-gamma prior




- __________________________________________________________________________________
Principal component analysis

A n x p data matrix X = (xq,...,x,) is observed.
Goal: project it onto a "good" d-dimensional subspace.

The optimal choice is obtained by spanning the top-d eigenvectors of X7 X,
called principal components.

How to choose the number d of principal components ?




e __________________________________________________________________________
Bayesian model selection for PPCA

Bayesian model selection provides an automatic way of choosing d.

Once we have a prior distribution p(My)p(W, o|Mg4), we can compute
posterior probabilities of dimensions as

p(MaqlX) o< p(X|Mq)p(Ma),

where
pOUMa) =TT [ plxilW. 0 Ma)p(W, ol Mo)dWilo
i1 JRIXPXRE

is the marginal likelihood of the data.

———t



e __________________________________________________________________________
Bayesian model selection for PPCA

Problem: the marginal likelihood is a challenging high-dimensional integral!

Usual solutions: variational (Archambeau & Bach, '08) or Laplace
approximations (Minka '00, Hoyle '08, Sobczyk, Bogdan & Josse '17),
MCMC sampling (Hoff '07).

Our approach: play once again with the PPCA model to obtain a
closed form expression of the marginal likelihood.




Looking at the marginal distribution of the data

X; = Wy; + €;
~ ~—

Random matrix X Gaussian vector  Gaussian vector with random variance

Is is possible to make these two terms follow the same kind of distribution?




The generalized Gauss-Laplace representation

Theorem (Kotz, Kozubowski & Podgérski, '01)
If u ~ Gamma(s,1) and e ~ N(0, X) is independent of u, we have

Ve ~ GAL,(Z,0, s).

Proposition

Let s, >0,p €RP and T € S Ifz; ~ GAL,(X, p, 51) and
2, ~ GAL,(X, i, sp) are independant random variables, then

2y +2p ~ GALP(Z, W, s+ 52).

This can be combined with our result on the distribution of the product of a
Gaussian matrix with a Gaussian vector!
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Towards exact marginal likelihood with a
normal-gamma prior

All of this motivates the following normal-gamma prior:
® Gaussian prior for the loading matrix wy ~ N(0,¢ %) for j € {1,...,p}
and k € {1,...,d} with some precision hyperparameter ¢ > 0.

® Gamma prior for the noise variance 02 ~ Gamma(a, b) with
hyperparameters a > 0 and b > 0.




Theorem
Let d € {1,..., p}. Under the normal-gamma prior with b = ¢/2, the
log-marginal likelihood of model My is given by

log p(X|a, d, My) = Z log p(xi|a, ¢, M)
i=1

= —% log(27) — % log(2¢™") — nlogM(a+ d/2)

++ L3Py oV,

+ Z log Ka+(d—p)/2(\/$||xi||2)'
i=1




Simulations with p =50, n =50, d = 20
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Conclusion: ongoing work and perspectives
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A retrospective

Main contributions of this thesis:

® Scaling up Bayesian variable selection through simple relaxations.

m Computing marginal likelihoods of Bayesian PCA models via a new
theoretical result.




A retrospective: publications

m Discussion on the Paper "A Bayesian Information Criterion for
Singular Models" by Drton and Plummer, Journal of the Royal
Statistical Society: Series B, vol. 79, pp. 370-371 (2017)

= Multiplying a Gaussian Matrix by a Gaussian Vector, Statistics &
Probability Letters, vol. 128, pp. 67-70 (2017)

= Combining a Relaxed EM Algorithm with Occam’s Razor for
Bayesian Variable Selection in High-Dimensional Regression (with
Charles Bouveyron, Julien Chiquet, and Pierre Latouche), Journal of
Multivariate Analysis, vol. 146, pp. 177-190 (2016)

m Globally Sparse Probabilistic PCA (with Charles Bouveyron and Pierre
Latouche), Proceedings of the 19th International Conference on Artificial

Intelligence and Statistics, Proceedings of Machine Learning Research,
vol. 51, pp. 976-984 (2016)
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A retrospective: preprints

m Exact Dimensionality Selection for Bayesian PCA (with Charles
Bouveyron and Pierre Latouche), Preprint HAL-01484099, Université
Paris Descartes (2017).

m Bayesian Variable Selection for Globally Sparse Probabilistic PCA
(with Charles Bouveyron and Pierre Latouche), Preprint HAL-01310409,
Université Paris Descartes (2016).




e __________________________________________________________________________
Some ongoing work

m Mixtures of Globally Sparse Probabilistic PCA for sparse and
interpretable clustering and discriminant analysis

® Speeding up high-dimensional multiclass discriminant analysis via variable
screening

m Deep adversarial clustering: learning deep representations for cluster
analysis







Global versus local - Variations on MNIST (n = 500,
p = 784)

Goal: perform unsupervised variable selection for three datasets introduced
by Larochelle, Erhan, Courville, Bergstra & Bengio ('07).

mnist-basic mnist- back rand  mnist-back-image

Samples ]




Global versus local - Variations on MNIST (n = 500,
p = 784)

mnist-basic mnist-back-rand  mnist-back-image

SPCA 1st. axis

SSPCA (d = 80)

GSPPCA (d = 80)




- __________________________________________________________________________________
Heuristics for hyperparameter choice

For each dimension d, we choose a such that the prior of o is roughly

centered around an estimate of the noise variance.

Then, a single ¢ is chosen for all models by maximizing a heuristic criterion

built in light of two statements:

® overestimation of d should be preferred to underestimation since loosing
some information is much more damageable than having a representation
not parsimonious enough,

® consequently, the marginal likelihood curve as a function of the
dimension should have two distinct phases: a first one when "signal
dimensions" are added (before the true value of d), and a second one,
when "noise dimensions" are added.
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Data simulated according to a PPCA model, true d is 20.




Simulation scheme

We simulate some data according to a PPCA model (p = 50, d = 20).
The performance criterion is the percentage of correctly estimated
dimensions for different sample sizes (50 replications for each case) of our
method (NG) and competitors for different SNRs
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