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High-dimensional data are ubiquitous
Traditional statistical paradigm:
� large number n of observations (patients, voters...),
� small number p of variables (medical measurements, answers in a

survey...).
Modern (big) data: DNA microarray n ≈ 100, p ≈ 10 000.Image processing 113

 

PPMM
MM MMMM
M 

FIGURE 5.11: The image of an Affymetrix microarray. A gene is represented
by a set of 20 probes. Each probe consists of 25 nucleotides. The top row
contains the perfect match (PM) probes while the bottom row contains the
mismatch (MM) probes. The MM probes are different from the PM probes
by a single nucleotide. If the mRNA corresponding to a gene was present
during the hybridization, the PM probes have a higher intensity than the MM
probes. The average difference between the PM and MM probes is considered
proportional to the expression level of the gene.

5.5 Image processing of Affymetrix arrays

Because the Affymetrix technology is proprietary, virtually all image process-
ing of the Affymetrix arrays is done using the Affymetrix software. The issues
are slightly different due to several important differences between technologies.

A first important difference between cDNA and oligonucleotide arrays
(oligo arrays) is the fact that cDNA arrays can use long DNA sequences while
oligonucleotide arrays can ensure the required precision only for short se-
quences. In order to compensate for this, oligo arrays represent a gene using
several such short sequences. A first challenge is to combine these values to
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High-dimensional data are ubiquitous

Traditional statistical paradigm:
� large number n of observations (patients, voters...),
� small number p of variables (medical measurements, answers in a

survey...).
Modern (big) data: NMR spectra n ≈ 100, p ≈ 1 000.
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High-dimensional data are cursed

High-dimensional datasets are collections of points in high-dimensional
spaces...
...and the geometry of high-dimensional spaces is rather peculiar.

High-dimensional Euclidean (hyper)balls are essentially empty!
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High-dimensional data are cursed

Since Gauss’s and Legendre’s least squares (≈1810), most of classical
statistics rely on Euclidean distances, which do not behave nicely in
high-dimensions.

“All this [the problems related to high-dimensional geometry] may be
subsumed under the heading “the curse of dimensionality”. Since this is a
curse (...) there is no need to feel discouraged about the possibility of
obtaining significant results despite it.”

Richard Bellman (’57)
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Betting on sparsity

Parametric statistical models assume that the observed data X ∈ Rn×p

comes from a density in a parametrized family (p(·|θ))θ∈Θ.

The dimension of Θ usually grows with the dimensionality p of the data,
which is another challenge of high-dimensional inference!

But most statistical/geometrical problems tend to disappear if we assume
that θ has few nonzero coefficients. We say that θ is q-sparse, with q � p.

“This has been termed the “Bet on sparsity” principle: Use a procedure that
does well in sparse problems, since no procedure does well in dense
problems.”

Hastie, Tibshirani & Wainwright (’15)

8



Visualizing data via PCA and the bet on sparsity

PCA aims at summarizing high-dimensional data using only two transformed
variables. Without betting on sparsity, the results are much less
interpretable.
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Betting on sparsity via likelihood penalization

A natural way to find a sparse parameter is to maximize a penalized version
of the likelihood

θ̂ ∈ argmaxθ∈Θ log p(X|θ)− λ||θ||0.

This combinatorial problem lacks scalability, and is often replaced by

θ̂ ∈ argmaxθ∈Θ log p(X|θ)− λ||θ||1.

Such optimization problems – often called lasso problems, following
Tibshirani (’96) – are highly scalable but hard to calibrate.
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Since we should bet on sparsity, why not do it
probabilistically ?

The Bayesian framework allows to express prior beliefs about θ by treating it
as a random variable. Here, our prior belief is that θ might be sparse.

To translate that belief, we will use the sparsity pattern v ∈ {0, 1}p of θ,
which is the binary vector that indicates which coefficients are nonzero. The
number of nonzero coefficients is denoted by q.

A simple Bayesian bet on sparsity: all sparsity patters are a priori as likely:
p(v) is the uniform distribution over {0, 1}p. More complex bets are also
possible.

11



Bayes’s theorem updates the bet on sparsity

Using Bayes’s theorem allows us to find which sparsity patters are more
likely, by computing the posterior probabilities of such patterns:

p(v|X) ∝ p(X|v)p(v) ∝ p(X|v),

where

p(X|v) =

∫
Θ

p(X|v)p(θ|v)dθ,

is the marginal likelihood or evidence of the data for the sparsity pattern v.
This sparsity pattern can be estimated via maximum a posteriori

v̂ ∈ argmaxv∈{0,1}pp(X|v).
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Betting on sparsity as Bayesian model uncertainty

� The Bayesian bet on sparsity is a particular instance of Bayesian model
uncertainty. All possible sparsity patterns can be viewed as competing
statistical models, over which we spread prior beliefs.

� The idea of spreading prior belief between models and computing
consequently their posterior probabilities was independently developed by
Harold Jeffreys & Dorothy Wrinch (≈ 1920), and by Jack Good & Alan
Turing (≈ 1942).

� It embodies the fact that simpler models are a priori pretty likely to be
useful, a philosophical principle often referred to as Occam’s razor.
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Two main challenges tackled in this thesis

The Bayesian framework provides a coherent way of expressing a bet on
sparsity, and will be our main tool to study high-dimensional data. Two
main issues lie however on top of these foundations:

� computing posterior probabilities of sparsity patterns imply computing
challenging high-dimensional integrals,

� there are 2p sparsity patterns that should be tested, which appears
infeasible!
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The linear model: a noisy linear system

A classical linear regression problem...

Y = Xβ + ε

Y ∈ Rn is a vector of n observed responses,
X ∈Mn,p is the design matrix with p input variables,
ε is a stochastic noise term of finite variance.
Goal : estimating β ∈ Rp.

...with a dimensionality issue...
n might be much smaller than p (maximum likelihood becomes is an
ill-posed problem).

...and a sparsity assumption.
β ∈ Rp is sparse (most of its coefficients are null).
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Obtaining a sparse solution through penalization

Regularizing the maximum likelihood procedure

β̂penalized = argminβ∈Rp ||Y − Xβ||22 + λpen(β),

λ is a tuning parameter,
pen is an (often convex) function that penalizes larger models.

Examples
� pen(β) = ||β||0 leads to NP-hard problems,
� pen(β) = ||β||1 (lasso, Tibshirani, ’96) is fast but not necessarily

model-consistent,
� pen(β) =

∑p
i=1 wi |β| (adaptive lasso, Zou, ’06) is asymptotically

model-consistent,
� pen(β) = α||β||22 + (1− α)||β||1 (elastic net, Zou & Hastie, ’06) can

select more variables than the lasso,
� etc.
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A model tailored for betting on sparsity

Plugging a sparsity pattern in the linear model{
Y = Xβ + ε

β = v �w,

� ε ∼ N (0n, In/γ) is a Gaussian noise term
� w ∼ N (0p, Ip/α) is a parameter vector with Gaussian prior

Consequence : Spike-and-Slab-like prior on β

p(β|v, α) =

p∏
j=1

p(βj |vj , α) =

p∏
j=1

δ0(βj)
1−vjN (βj ; 0, 1/α)vj

(à la Mitchell and Beauchamp, ’88)
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An empirical Bayes framework...
v, γ and α are estimated via maximum marginal likelihood (MML) :

(v̂, γ̂, α̂) ∈ argmaxv,γ,α

∫
Rp

p(Y|X,w, v, α, γ)p(w|α)dw.

...leads to an automatic penalization of the likelihood
The MML approach implies an Occam factor which, by penalizing larger
models, leads to an efficient model selection:

− log p(Y|v, α, γ) =
γ

2
||Y − Xvmv||22 + pen(v, α, γ)

where

pen(v, α, γ) =
α

2
‖m‖22 −

logα
2
‖m‖0 −

1
2
log det(γXT

v Xv + αIq) a.s.
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Towards scalable model selection: from discrete to
continuous...

To tackle this combinatorial nature of the optimization problem, we replace
v by a continuous parameter u ∈ [0, 1]p and use an EM algorithm
(Dempster, Laird & Rubin, ’77) to maximize the marginal likelihood of this
relaxed model.

We end up with a continuous estimate û ∈ [0, 1]p.
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...and to discrete again.

How to reverse the relaxation ?
To lead to the right model, û has to be binarized.

û leads to a path of p models
We find v̂ by maximizing the marginal likelihood of the non-relaxed model
over the path of p nested models implied by the ordering of the coefficients
of û.
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Relaxation-binarization in action (toy model)

Values of û and actual binary values of v (left) and evidence computed over
the path of models (right).
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A (short) benchmark study (p = 100, q = 40)

Highly correlated predictors with a Toeplitz covariance matrix R defined by
� rii = 1 for all ∈ {1, ..., p},
� rij = 0.75|i−j| for i , j ∈ {1, ...p} and i 6= j .

Evaluation metric: the F-score allows to measure the quality of a variable
selection procedure by giving a score between 0 and 1.

18 different simulations schemes were done.
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A (short) benchmark study (p = 100, q = 40)
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Predicting the number of visitors in the Orsay museum
with bike-sharing data

The "OrsayVelib" database: a high-dimensional problem
We wish to predict the number of visitors of the Orsay museum using the
activity of the Paris bike-sharing system (Vélib’).
� At each hour, the number of visitors in the museum constitutes the

response variable,
� The predictors are the loadings of the p = 1158 Vélib’ stations in Paris,
� The month of September 2014 constitutes the learning set (with n = 316

observations), and the first two weeks of October 2014 the test set.
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SpinyReg generalizes better and is sparser

Ridge SSEP Lasso Adalasso SpinyReg
MSE×10−4 145.66 144.38 132.08 159.17 127.36

Selected variables 1158 1146 167 155 45
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SpinyReg gives more interpretable results
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Principal component analysis aims at summarizing
multivariate data

Goal: Summarize all p variables with d � p scores.

Tons of applications over the last century...
� children test results (Hotelling, ’33),
� image processing, from eigenfaces (Turk and Pentland, ’91) to deep

learning (Chan et al., ’15),
� mass spectrometry (Ostrowski et al., ’04),
� DNA microarray data (Rignér, ’08)...

Many modern applications involve cases with much more variables than
observations !
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Principal component analysis

A n × p data matrix X = (x1, ..., xn)T is observed.

Goal: project it onto a "good" d-dimensional subspace.

The optimal choice is obtained by spanning the top-d eigenvectors of XTX
or by factorizing into a low-rank decomposition:

Hello WorldHello WorldHello World

≈X W
Y

T
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(Locally) Sparse Principal Component Analysis

A n × p data matrix X = (x1, ..., xn)T is observed.

Goal: project it onto a "good" d-dimensional subspace.

But regular PCA fails when p is large (Johnstone & Lu ’09). Sparse versions
of PCA have beed developed consequently:

Hello WorldHello WorldHello World

X ≈ W

Y

Hello WorldHello WorldHello World

X W

Y

≈

T
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Globally Sparse Principal Component Analysis

A n × p data matrix X = (x1, ..., xn)T is observed.

Goal: project it onto a "good" d-dimensional subspace.

To truly perform unsupervised variable selection, the projection matrix W
has to be row-sparse, leading to the globally sparse PCA problem:

Hello WorldHello WorldHello World

X ≈ W

Y

Hello WorldHello WorldHello World

X W

Y

≈T
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Probabilistic PCA: a generative model for PCA

PPCA assumes that each observation is driven by the following generative
model:

x = Wy + ε

where y ∼ N (0, Id) is a low-dimensional Gaussian latent vector, W is a
p × d parameter matrix called the loading matrix and ε ∼ N (0, σ2Ip) is a
Gaussian noise term.

This model is equivalent to PCA in the sense that computing maximum
likelihood estimates recovers the principal axes (Tipping & Bishop, ’99).
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Betting of global sparsity within PPCA

We consider the model
x = VWy + ε

where V = diag(v), the matrix VW is row-sparse, leading to global sparsity.

To perform Bayesian model selection, we use Gaussian priors
wij ∼ N (0, 1/α2) and chose the hyperparameters that maximizes the
marginal likelihood:

p(X|v, α, σ) =
n∏

i=1

p(xi |v, α, σ) =
n∏

i=1

∫
Rp×d

p(xi |W, v, α, σ)p(W)dW
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The marginal likelihood appears to be intractable!

Theorem
The density of x is given by

p(x|v, α, σ) ∝ e−
||x—v||22
2σ2

||xv||q/2−12

∫ ∞
0

uq/2e−σ
2u2

(1 + (u/α)2)d/2
Jq/2−1(u||xv||2)du.

This kind of integral is known to be difficult to compute (Ogata, ’05).
Classical Bayesian approximations are usually used: Laplace (Bishop ’99,
Minka ’00), variational (Archambeau & Bach, ’09)...

Is it possible to play with the PPCA model to obtain a tractable likelihood ?
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Our solution: Probabilistic PCA à la Roweis

PPCA allows to recover the principal components even in the limit noiseless
setting σ → 0 ! (Roweis ’98)

In order to obtain a tractable likelihood, we consider the following model:

x = VWy +—Vε1 + Vε2,

� ε1 ∼ N (0, σ21Ip) is the noise of the inactive variables,
� ε2 ∼ N (0, σ22Ip) is the noise of the active variables.
We want to investigate the noiseless case σ2 → 0.
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Aparté: Multiplying a Gaussian matrix with a Gaussian
vector
A random variable z ∈ Rp is said to have a multivariate generalized
asymmetric Laplace distribution with parameters s > 0,µ ∈ Rp and Σ ∈ S+

p

if its characteristic function is

∀u ∈ Rp, φGALp(Σ,µ,s)(u) =

(
1

1 + 1
2u

TΣu− iµTu

)s

.

(Kotz, Kozubowski & Podgórski, ’01)

Theorem
Let W be a p × d random matrix with i.i.d. columns following a
N (0,Σ) distribution and let y ∼ N (0, Id) independent from W.
Then

Wy ∼ GALp(2Σ, 0, d/2).
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Theorem
In the noiseless limit σ2 → 0, x converges in probability to a random
variable x̃ whose density is

p(x̃|v, α, σ1) = N (x̃—v|0, σ1Ip−q)GALq(x̃v|2/α2Iq, 0, d/2).

This theorem allows us to exactly compute the noiseless empirical Bayes
marginal log-likelihood defined as L(X, v, α, σ1) =

∑n
i=1 log p(x̃i |v, α, σ1).

Up to unnecessary constants,

L(X, v, α, σ1) = −||X—v||
2
F

2σ21
− n(p − q) log σ1

+
nq

2
logα +

n∑
i=1

(
logK(q−d)/2(α||xv i ||2)− q log ||xv i ||2

)
.
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Automated hyperparameters choice

For σ1: what appears to work best is to simply use the ML estimator from
the ideal non-noiseless PPCA model which is the mean of the p − d smallest
eigenvalues of XTX.

For α: if v is known, the regularization parameter can be optimized
efficiently using gradient ascent. The properties of Bessel functions insure
that the objective function is univariate and concave !
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Scalable inference through a relaxed model

We replace v by a continuous parameter u ∈ [0, 1]p. Denoting U = diag(u),
and θ = (u, α, σ), this can be written

x = UWy + ε.

We follow a variational approach to minimize the free energy

Fq(x1, ...xn|θ) = −Eq[ln p(X,Y,W|θ)]− H(q)

which is an upper bound to the negative log-evidence:

− ln p(X|θ) = Fq(X|θ)− KL(q||p(·|θ)) ≤ Fq(X|θ).

The relaxation is reversed as before.
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Comparisons with other methods

Simulation setup with p = 200, q = 20, d = 10, σ = 1.
SSPCA (Jenatton, Obozonski & Bach, ’09) achives global sparsity with a
`1 − `2 norm.

Table: F-score×100 based on 50 runs

n = p/5 n = p/4 n = bp/3c n = p/2 n = p
SPCA 20.7± 0.7 21.2± 0.7 21.5± 0.7 21.7± 0.5 25.2± 2.1
SSPCA 66.7± 21.4 71.5± 20 86.7± 14.2 95.6± 8.9 98.2± 7.2
GSPPCA 86.8± 7.06 93.9± 3.66 97.2± 2.55 99.2± 1.4 100± 0

The local method (SPCA) is unable to select the relevant variables.
GSPPCA consistently outperforms the global `1 − `2 based method.
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Global versus local - breast cancer data set (n = 334,
p = 5391)

Microarray data from Wang et al. (’05) and Minn et al. (’07).
We can measure the biological significance using the pathway enrichment
index (PEI) introduced by Teschendorff, Journée, Absil, Sepulchre & Caldas
(’07).

Table: PEI for several fixed cardinalities

Cardinality tPCA SPCA GSPPCA
290 selected by tPCA 0.09 0.09 3.22
1000 1.88 1.88 4.57
1965 selected by GSPPCA 1.7 1.61 5.19
3000 1.16 1.43 3.58
4466 selected by SPCA 3.04 3.22 4.29
5000 1.79 1.88 2.42
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Global versus local - breast cancer data set (n = 334,
p = 5391)
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Principal component analysis

A n × p data matrix X = (x1, ..., xn)T is observed.

Goal: project it onto a "good" d-dimensional subspace.

The optimal choice is obtained by spanning the top-d eigenvectors of XTX,
called principal components.

How to choose the number d of principal components ?
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Bayesian model selection for PPCA

Bayesian model selection provides an automatic way of choosing d.

Once we have a prior distribution p(Md)p(W, σ|Md), we can compute
posterior probabilities of dimensions as

p(Md |X) ∝ p(X|Md)p(Md),

where

p(X|Md) =
n∏

i=1

∫
Rd×p×R+

p(xi |W, σ,Md)p(W, σ|Md)dWdσ,

is the marginal likelihood of the data.
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Bayesian model selection for PPCA

Problem: the marginal likelihood is a challenging high-dimensional integral!

Usual solutions: variational (Archambeau & Bach, ’08) or Laplace
approximations (Minka ’00, Hoyle ’08, Sobczyk, Bogdan & Josse ’17),
MCMC sampling (Hoff ’07).

Our approach: play once again with the PPCA model to obtain a
closed form expression of the marginal likelihood.
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Looking at the marginal distribution of the data

xi = Wyi︸︷︷︸
Random matrix × Gaussian vector

+ εi︸︷︷︸
Gaussian vector with random variance

Is is possible to make these two terms follow the same kind of distribution?
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The generalized Gauss-Laplace representation

Theorem (Kotz, Kozubowski & Podgórski, ’01)
If u ∼ Gamma(s, 1) and e ∼ N (0,Σ) is independent of u, we have

√
ue ∼ GALp(Σ, 0, s).

Proposition
Let s1, s2 > 0,µ ∈ Rp and Σ ∈ S+

p . If z1 ∼ GALp(Σ,µ, s1) and
z2 ∼ GALp(Σ,µ, s2) are independant random variables, then

z1 + z2 ∼ GALp(Σ,µ, s1 + s2).

This can be combined with our result on the distribution of the product of a
Gaussian matrix with a Gaussian vector!
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Towards exact marginal likelihood with a
normal-gamma prior

All of this motivates the following normal-gamma prior:

� Gaussian prior for the loading matrix wjk ∼ N (0, φ−1) for j ∈ {1, ..., p}
and k ∈ {1, ..., d} with some precision hyperparameter φ > 0.

� Gamma prior for the noise variance σ2 ∼ Gamma(a, b) with
hyperparameters a > 0 and b > 0.
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Theorem
Let d ∈ {1, ..., p}. Under the normal-gamma prior with b = φ/2, the
log-marginal likelihood of modelMd is given by

log p(X|a, φ,Md) =
n∑

i=1

log p(xi |a, φ,Md)

= −np

2
log(2π)− np

2
log(2φ−1)− n log Γ(a + d/2)

+ (a +
d − p

2
)

n∑
i=1

log(

√
φ||xi ||2
2

)

+
n∑

i=1

logKa+(d−p)/2(
√
φ||xi ||2).
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Simulations with p = 50, n = 50, d = 20
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Betting on sparsity for high-dimensional data
Ubiquity and curses of high-dimensional data
Betting on sparsity through Bayesian model uncertainty

Sparse regression
A sparse linear model
Applications

Bayesian variable selection for globally sparse PCA
A framework for globally sparse PCA
Applications

Exact dimensionality selection for Bayesian PCA
Exact model selection for PCA through a normal-gamma prior

Conclusion: ongoing work and perspectives
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A retrospective

Main contributions of this thesis:
� Scaling up Bayesian variable selection through simple relaxations.
� Computing marginal likelihoods of Bayesian PCA models via a new

theoretical result.
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A retrospective: publications

� Discussion on the Paper "A Bayesian Information Criterion for
Singular Models" by Drton and Plummer, Journal of the Royal
Statistical Society: Series B, vol. 79, pp. 370–371 (2017)

� Multiplying a Gaussian Matrix by a Gaussian Vector, Statistics &
Probability Letters, vol. 128, pp. 67–70 (2017)

� Combining a Relaxed EM Algorithm with Occam’s Razor for
Bayesian Variable Selection in High-Dimensional Regression (with
Charles Bouveyron, Julien Chiquet, and Pierre Latouche), Journal of
Multivariate Analysis, vol. 146, pp. 177–190 (2016)

� Globally Sparse Probabilistic PCA (with Charles Bouveyron and Pierre
Latouche), Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, Proceedings of Machine Learning Research,
vol. 51, pp. 976–984 (2016)
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A retrospective: preprints

� Exact Dimensionality Selection for Bayesian PCA (with Charles
Bouveyron and Pierre Latouche), Preprint HAL-01484099, Université
Paris Descartes (2017).

� Bayesian Variable Selection for Globally Sparse Probabilistic PCA
(with Charles Bouveyron and Pierre Latouche), Preprint HAL-01310409,
Université Paris Descartes (2016).
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Some ongoing work

� Mixtures of Globally Sparse Probabilistic PCA for sparse and
interpretable clustering and discriminant analysis

� Speeding up high-dimensional multiclass discriminant analysis via variable
screening

� Deep adversarial clustering: learning deep representations for cluster
analysis
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Global versus local - Variations on MNIST (n = 500,
p = 784)

Goal: perform unsupervised variable selection for three datasets introduced
by Larochelle, Erhan, Courville, Bergstra & Bengio (’07).

mnist-basic mnist-back-rand mnist-back-image

Samples
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Global versus local - Variations on MNIST (n = 500,
p = 784)

mnist-basic mnist-back-rand mnist-back-image

SPCA 1st. axis

SSPCA (d = 80)

GSPPCA (d = 80)
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Heuristics for hyperparameter choice

For each dimension d , we choose a such that the prior of σ is roughly
centered around an estimate of the noise variance.
Then, a single φ is chosen for all models by maximizing a heuristic criterion
built in light of two statements:
� overestimation of d should be preferred to underestimation since loosing

some information is much more damageable than having a representation
not parsimonious enough,

� consequently, the marginal likelihood curve as a function of the
dimension should have two distinct phases: a first one when "signal
dimensions" are added (before the true value of d), and a second one,
when "noise dimensions" are added.
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Data simulated according to a PPCA model, true d is 20.
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Simulation scheme

We simulate some data according to a PPCA model (p = 50, d = 20).
The performance criterion is the percentage of correctly estimated
dimensions for different sample sizes (50 replications for each case) of our
method (NG) and competitors for different SNRs
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p = 50, n = 100
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p = 50, n = 70
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p = 50, n = 50
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p = 50, n = 40
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