Ensembles in machine learning

(simple) theory and (simple) practice

Pierre-Alexandre Mattei

Not many new things in this talk, but | will also talk about some joint ongoing work with
Damien Garreau, Raphaél Razafindralambo, Rémy Sun, Frédéric Precioso

see Mattei & Garreau, Are Ensembles Getting Better all the Time?, 2024 arXiv:2311.17885
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Menu of the day

1. Historical intro

2. Some basic examples of ensembles used in practice
» MC dropout
» Deep ensembles

3. When and why ensembling works? Some empirics

4. When and why ensembling works? The case of convex losses

5. Nonconvex subtleties
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Ensembles In stats and machine
learning, a brief history
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What are ensembles? The 90s

« Ensembles combine the predictions of several base models.

«  They became very trendy in the 90s, in particular via the work of Leo Breiman, who came
up with bagging and random forests

7

< Breiman, Bagging predictors, Machine Learning, 1996

» Base models correspond to the same algorithm trained on
different bootrapped subsamples of the data

7

< Breiman, Random forests, Machine Learning, 2000

7

% A variant of bagging where base models are randomised
decision trees
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7

*» Hansen and Salamon, Neural network ensembles, IEEE PAMI, 1990
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What are ensembles? The 90s

« Ensembles combine the predictions of several base models.

* They became very trendy in the 90s, in particular for neural networks. Base models

correspond to the networks with the same architecture trained with different
initialisation

7

*» Hansen and Salamon, Neural network ensembles, IEEE PAMI, 1990

7

% Krogh and Vedeslby, Neural Network Ensembles, Cross Validation,
and Active Learning, NeurlPS, 1995
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What are ensembles? Trends of the 2020s

*  For tabular data, ensembles of decision trees (random forest, boosting) still perform better
than deep learning.

7

% @Grinsztajn, Oyallon, and Varoquaux, Why do tree-based models still
outperform deep learning on typical tabular data?, NeurlPS 2022

13



What are ensembles? Trends of the 2020s

*  For tabular data, ensembles of decision trees (random forest, boosting) still perform better
than deep learning.

7

% @Grinsztajn, Oyallon, and Varoquaux, Why do tree-based models still
outperform deep learning on typical tabular data?, NeurlPS 2022

- Ensembling also works well together with deep learning.

14



What are ensembles? Trends of the 2020s

*  For tabular data, ensembles of decision trees (random forest, boosting) still perform better
than deep learning.

7

% @Grinsztajn, Oyallon, and Varoquaux, Why do tree-based models still
outperform deep learning on typical tabular data?, NeurlPS 2022

- Ensembling also works well together with deep learning.

» In Monte Carlo dropout (MC dropout), base models are versions of a single network
with several dropout masks

7

% Gal and Ghahramani, Dropout as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning, ICML 2016

15



What are ensembles? Trends of the 2020s

*  For tabular data, ensembles of decision trees (random forest, boosting) still perform better
than deep learning.

7

% @Grinsztajn, Oyallon, and Varoquaux, Why do tree-based models still
outperform deep learning on typical tabular data?, NeurlPS 2022

- Ensembling also works well together with deep learning.

» In Monte Carlo dropout (MC dropout), base models are versions of a single network
with several dropout masks

» Deep ensembles are similar to the neural net ensembles of the 90s: base models are
different trainings of the same deep architecture

» Lakshminarayanan, Pritzel, Blundell, Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles, NeurlPS 2017
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What are ensembles? Trends of the 2020s

*  For tabular data, ensembles of decision trees (random forest, boosting) still perform better
than deep learning.

7

% @Grinsztajn, Oyallon, and Varoquaux, Why do tree-based models still
outperform deep learning on typical tabular data?, NeurlPS 2022

- Ensembling also works well together with deep learning.

> |In Monte Carlo dropout (MC dropout), base models are versions of a single network
with several dropout masks

» Deep ensembles are similar to the neural net ensembles of the 90s: base models are
different trainings of the same deep architecture

Both MC dropout and deep ensembles work extremely well especially

with respect to “uncertainty aware” metrics like the cross-entropy, but 17
are a bit less impressive in terms of accuracy.




What are ensembles? Beyond stats and ML

The key idea behing ensembles is that groups are
collectively better at decision-making than individals.
This is an old idea, that goes way beyond ML.
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What are ensembles? Beyond stats and ML

« The key idea behing ensembles is that groups are
collectively better at decision-making than individals.
This is an old idea, that goes way beyond ML.

« At the end of the 1700s, Condorcet proposed a
mathematical formalisation of this argument that is
somewhat close to what we’ll see today. His main
applications were politics and jurys.
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Par M. LE MARQUIS DE CONDORCET, Secrétaire perpétuel
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What are ensembles? Beyond stats and ML

- The key idea behing ensembles is that groups are R B >
collectively better at decision-making than individals.
This is an old idea, that goes way beyond ML. T et
CQMBINING FOHECABSTS - THEORETICAL — >
glgl;;:sf ;75) (1lg17r15, 1977) ae;n;‘%na(han
Gtan(%l;; g‘) Newbold
« Economists, econometricians and forecasters have used
o INFngA'I'rIgI;l‘i\II;OEFFICIENCY ,, 4’
ensembles from the 60s. Neeor— Coopn

7

% Clemen, Combining forecasts: A review and annotated
bibliography, International Journal of Forecasting, 1989
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What are ensembles? Beyond stats and ML

« The key idea behing ensembles is that groups are
collectively better at decision-making than individals.
This is an old idea, that goes way beyond ML.

« The phrase « wisdom of crowds », popularised by
Surowiecki’s bestselling book, is often used to summarise
this idea

A NEW YORK TIMES BUSINESS BESTSELLER
“As entertaining and thought-provoking as The Tipping Point by
Malcolm Gladwell. . . . The Wisdom of Crowds ranges far and wide.”
—The Boston Globe

THE WISDOM
OF CROWDS

JAMES
SUROWIECKI

WITH A NEW AFTERWORD BY THE AUTHOR




What ensembles will we be looking at today

« Today, we’ll study ensembles that are slight variations of the same model, e.g. random
forests, deep ensembles, MC dropout, bagging, test-time data augmentations...
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What ensembles will we be looking at today

« Today, we’ll study ensembles that are slight independent variations of the same model,
e.g. random forests, deep ensembles, MC dropout, bagging, test-time data
augmentations...

*  While this is very general, other ensembles that do not satisfy this property exist, but we
will not be looking at them today: boosting, Bayesian model averaging, ensembles of
different physical models for weather forecasting...

7

< Kuncheva, Combining Pattern Classifiers: Methods and Algorithms (279 edition),
Wiley, 2014
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What ensembles will we be looking at today

« Today, we’ll study ensembles that are slight independent variations of the same model,
e.g. random forests, deep ensembles, MC dropout, bagging, test-time data
augmentations...

*  While this is very general, other ensembles that do not satisfy this property exist, but we
will not be looking at them today: boosting, Bayesian model averaging, ensembles of
different physical models for weather forecasting...

7

< Kuncheva, Combining Pattern Classifiers: Methods and Algorithms (279 edition),
Wiley, 2014

Combining

Pattern Classifiers
Methods and Algorithms, Second Edition

24
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Basic but popular ensembles of neural nets



Deep ensembles

* Train n neural nets on the same dataset, with the same training algorithm but different
random seeds.

- Weirdly enough, it generally outperforms bagging of deep nets.
- Again, we can average the networks as we see fit, for instance just average the outputs.

» This can be used for any deep learning task, not only classification, but segmentation,
generative modelling (R. Razafindralambo’s talk on Monday), regression...

- Related to Bayesian deep learning:
> Wild et al., A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods, NeurlPS 2023
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MC dropout

 Train a neural net once, but with dropout activated.

* Then, average the networks obtained using different (random) dropout masks.
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MC dropout

 Train a neural net once, but with dropout activated.

* Then, average the networks obtained using different (random) dropout masks.

Loose relationship with Bayesian inference:
» Hron et al., Variational Bayesian dropout: pitfalls and fixes, ICML 2023
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When and why ensembles work?
some empirics



MC dropout for medical image classification
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MC dropout for medical image classification
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Ensembles seem to be getting better and better &
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Ensembles seem to be getting better and better? Really? &
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First observations

Ensembles seem to be monotonically improving for the cross-entropy, but things seem
less clear for the accuracy.
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First observations

less clear for the accuracy.

Ensembles seem to be monotonically improving for the cross-entropy, but things seem

If we investigate, we notice that we can split the test dataset into two parts:

» One part where the prediction of y, is right, for which the accuracy increases
» One part where the prediction of y, is wrong, for which the accuracy decreases
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What about the cross entropy?
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What about the cross entropy?

« Dividing the dataset into the same parts is harmless for the monotonicity of the cross-
entropy. It seems that the cross-entropy is always getting better and better!
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The behaviour we just saw is typical

These observations are incredibly universal, and were previously highlighted for random
forests by Probst and Boulesteix (2018) who looked at 308 data sets!

7

*» Probst and Boulesteix, To Tune or Not to Tune the Number of Trees in Random
Forests, JMLR 2018
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The behaviour we just saw is typical

« These observations are incredibly universal, and were previously highlighted for random
forests by Probst and Boulesteix (2018) who looked at 308 data sets!

7

*» Probst and Boulesteix, To Tune or Not to Tune the Number of Trees in Random
Forests, JMLR 2018

- Their empirical conclusions are:

» The cross-entropy and the Brier score seem to be getting better all the time as
the ensemble grows

» The accuracy and the AUC have a more subtle behaviour that can be non-
monotonic

Our goal is to provide a theoretical explaination for these behaviours. 46




What differentiates these losses?

* Q: In what way are the cross-entropy/Brier score different from the classification
error/AUC?
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What differentiates these losses?

* Q: In what way are the cross-entropy/Brier score different from the classification
error/AUC?

» Cross-entropy and Brier score are convex, which is not the case of classification
error/AUC.

« Our main contribution is to show that this convexity divide is responsible for the results
we just saw. We will essentially show that

» For convex losses, ensembles are getting better all the time

» For convex losses, ensembles are improving over “good” data points and
getting worse over “bad” data points.

49



Squared error

This goes beyond classification!

«  While we only talked about classification so far, these insights are true as long as
there is an ensemble and a loss function, for instance in regression, parameter
estimation, or collective intelligence.

 Here a crowd was asked to predict the ratings of upcoming movies

1200

1000

1.0

800

[e)]
o
o

200

T

6 10 Zb 3b 4b
Size K of ensemble

B 14
S
0.8 1 1.2 4
)] )
9] —
©) = 1.04
— r—
067 O
= 0.8 1
B ()
2 =
o 047 5 0.6-
= =
< 0.4 1
0.2 a
O 0.2
T OO T T T T T T 00 T T T T T T
50 0 10 20 30 40 50 0 10 20 30 40 5(

Size K of ensemble Size K of ensemble

— John Wick 2, |y — §oo| =~ 28.85 > 10
— Ghost in the Shell, |y — yoo| = 5.41 < 10 50
— Beauty and the Beast, |y — 0| ~ 14.92 > 10



This goes beyond classification!

«  While we only talked about classification so far, these insights are true as long as
there is an ensemble and a loss function, for instance in regression, parameter
estimation, or collective intelligence.

 Here a crowd was asked to predict the ratings of upcoming movies

convex 1.0- "
e 5 e
3
= 0.8 1.2 /"
@) wn o
~ wn ~
— o =  1.0-
v — 0.6 S
g < (8 0.8-
D) ()
— 2 = i
o~ o 047 S 06
= 4
o B < 0.4
N 0.2 a
(«D) 0.2
@)
T T T T OO T T T T T T 00 T T T T T T
10 20 30 40 0 10 20 30 40 50 0 10 20 30 40 5(C
Size K of ensemble Size K of ensemble Size K of ensemble

— John Wick 2, |y — §oo| =~ 28.85 > 10
— Ghost in the Shell, |y — yoo| = 5.41 < 10 o
— Beauty and the Beast, |y — 0| ~ 14.92 > 10



—
o
—
—
O
o)
&)
—
fav)
)
o
@p)

Simoiu et al., Studying the “Wisdom of Crowds” at Scale, HCOMP, 2019

This goes beyond classification!

«  While we only talked about classification so far, these insights are true as long as
there is an ensemble and a loss function, for instance in regression, parameter
estimation, or collective intelligence.

 Here a crowd was asked to predict the ratings of upcoming movies
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For convex losses, ensembles are getting
better all the time




Formalising the problem

» We have predictions /1, ...,y € C (e.g. the predictive probabilities of K neural
nets for a single given image), and we want to look at the average prediction

K
—_— 1 VaN
Y — 7> E Yk
KK
k=1
- We also assume that we have a loss function L : (' — R

- Since we want to have results on the influence of the predictions at the data point
level, we assume that everything is fixed except the yS.
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» We have predictions /1, ...,y € C (e.g. the predictive probabilities of K neural
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K
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Uoo = El1] =+ = E [jx]



All these assumptions are true for random forests,

deep ensembles, bagging,...

We have predictions 91, ...,k € C (e.g. the predictive probabilities of K neural
nets for a single given image), and we want to look at the average prediction

K
—_— 1 VaN
Y — 7> E Yk
KK
k=1
We also assume that we have a loss function L. : (' — R

Since we want to have results on the influence of the predictions at the data point
level, we assume that everything is fixed except the yS.

We are going to assume that U1, . . . , Y i are exchangeable (weaker than i.i.d.) with
mean 57

Uoo = El1] =+ = E [jx]



Refresher: Jensen’s inequality

« If we assume that the loss is convex, we have convexity and averages, so using Jensen’s
seems like a good idea.

- Reminder: in its general form, Jensen’s states that f(IE|x|) < [E[f(x)| when fis
convex and these expectations exist.

A useful version is its finite form

K

1 & 1

k=1
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Jensen’s and ensembles, old school classics

« Using the finite form of Jensen’s gives

L(yx) < % ]; L(gx)
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Jensen’s and ensembles, old school classics

Using the finite form of Jensen’s gives
1 K
Lix) < 7 ]; L()

Average loss of
the individual

Loss of the

ensemble
models
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Jensen’s and ensembles, old school classics

« Using the finite form of Jensen’s gives

Loss of the
worst model

Average loss of
the individual
models

Loss of the
ensemble

63

For this, we don’t even need to assume that the predictions are random variables!



Jensen’s and ensembles, old school classics

Using the finite form of Jensen’s gives

f U1,...

K
1
L(Yg) < — L(y:) < max
W) S K 1; (k) < ke{l,... K}
, U i are exchangeable with mean Yoo = K [Ql] — ...

further gives

L(Ys) <E[L (k)]

L(x)

E|

A

YK

], Jensen’s
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Jensen’s and ensembles, old school classics

Using the finite form of Jensen’s gives

K
1
Lik) < 7= ) Llik) <
(WK) < K}; (yk)_ke«{nl,.aj}-ff(}

If U1,..., YK are exchangeable with meany . = E [g1] = - -

further gives

—~ L(Yy) <E[L[Wg)]
Loss of the “Iinfinite”

ensemble

L(x)

= E |9k, Jensen’s

65



Jensen’s and ensembles, old school classics

Using the finite form of Jensen’s gives

K
1
L) < — N " L) < L(i
(yK)—K]; (yk)_ké{r{lﬁ%m (Uk)

If U1,..., YK are exchangeable with mean?.. = E [¢1] = - -+ = E [§k], Jensen’s
further gives

—~ L(Yy) <E[L[Wg)]
Loss of the “Iinfinite”

Average loss of a

66
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Jensen’s and ensembles, old and new

« The arguments of the previous slides were already used in the ensemble papers from the
90s (Michael Perrone’s 1993 PhD thesis, Krogh and Vedelsby, 1995, Breiman, 1996).

When L is the squared error, this is just another way to say that ensembling reduces the
variance

« The summary was that an ensemble with a single model is worse than one with a finite

number of models K > 2, which is in turn worse than one with an infinite number of
models.

67



Jensen’s and ensembles, old and new

« The arguments of the previous slides were already used in the ensemble papers from the
90s (Michael Perrone’s 1993 PhD thesis, Krogh and Vedelsby, 1995, Breiman, 1996).

When L is the squared error, this is just another way to say that ensembling reduces the
variance

* The summary was that an ensemble with a single model is worse than one with a finite
number of models K > 2, which is in turn worse than one with an infinite number of
models.

- But this says nothing about the question that really interests us : Is it always true that an
ensemble of K models performs better than an ensemble of K — 1 models?

« Actually, playing around with Jensen’s inequality allows to have a simple answer to that
question.



Playing around with Jensen’s

« Qur goal is to use Jensen’s to show that ensembles are getting better, i.e. that

ElL(Yk)] < E[L(Yx 1))
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use Jensen’s.
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Playing around with Jensen’s

« Qur goal is to use Jensen’s to show that ensembles are getting better, i.e. that

ElL(Yk)] < E[L(Yx 1))

It would be neat to write down Y ;- as some form of expectation of Y i —1 and directly
use Jensen’s. This is actually not too hard, by noting that

K
%Zf&k: Z _1Zyk
k=1

k#j
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Playing around with Jensen’s

« Qur goal is to use Jensen’s to show that ensembles are getting better, i.e. that

ElL(Yk)] < E[L(Yx 1))

It would be neat to write down Y ;- as some form of expectation of Y i —1 and directly
use Jensen’s. This is actually not too hard, by noting that

1 i ol 1 A
k=1 71=1 k+#7
« Using Jensen’s then gives us 1
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Playing around with Jensen’s

K
1 )
- We saw that L (E kg_l yk>

1
<
- K

73



Playing around with Jensen’s

] & ] ]
We saw that L<§;Qk> < E . 1L m Yk

* Averaging this expression gives

(1 E 1 1 & 1
FlLl =S a0 ll<Z2SNS"rlnl - Ny
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Playing around with Jensen’s

1 & 1 1
- We saw that L (? Z@k> < K - L 1 @k
k=1 =1 k+#7

« Averaging this expression gives

Equals E [L (7;_,)| because
of exchangeability
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Ensembles get better for convex losses

We have just shown that, when the predictions are exchangeable and the loss is convex,
ensembles are monotonically getting better

E[L#g) <E[LGx_1)]
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Ensembles get better for convex losses

We have just shown that, when the predictions are exchangeable and the loss is convex,
ensembles are monotonically getting better

E[L#g) <E[LGx_1)]

» Possible to have strict monotonicity when the loss is strongly convex
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Ensembles get better for convex losses

« We have just shown that, when the predictions are exchangeable and the loss is convex,
ensembles are monotonically getting better

E[L@g)] <E|[L(Tx_1)]

» Possible to have strict monotonicity when the loss is strongly convex
» A version of this result has been published a long time ago in a different context

% Marshall and Proschan, An inequality for convex functions involving majorization,
Journal of Mathematical Analysis and Applications, 1965
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Ensembles get better for convex losses

« We have just shown that, when the predictions are exchangeable and the loss is convex,
ensembles are monotonically getting better

E[L@g)] <E|[L(Tx_1)]

» Possible to have strict monotonicity when the loss is strongly convex
» A version of this result has been published a long time ago in a different context

% Marshall and Proschan, An inequality for convex functions involving majorization,
Journal of Mathematical Analysis and Applications, 1965

» In the ML/stats litterature, versions of this result with specific losses (MSE, cross-entropy)
and additional assumptions have been published (Probst and Boulesteix, 2018)
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Ensembles get better for convex losses

« We have just shown that, when the predictions are exchangeable and the loss is convex,
ensembles are monotonically getting better

E[L@g)] <E|[L(Tx_1)]

» Possible to have strict monotonicity when the loss is strongly convex
» A version of this result has been published a long time ago in a different context

% Marshall and Proschan, An inequality for convex functions involving majorization,
Journal of Mathematical Analysis and Applications, 1965

» In the ML/stats litterature, versions of this result with specific losses (MSE, cross-entropy)
and additional assumptions have been published (Probst and Boulesteix, 2018)

» Also related to the monotonicity of IWAE bounds, as first noticed by this paper

“* Noh et al., Regularizing deep neural networks by noise: Its interpretation and =
optimization, NeurlPS 2017



O

What happens for nonconvex losses?



Can we reuse what we did for non-convex losses?

« There is an instance of nonconvex loss that can be tackled by the convex theory! Is we
have a concave loss then ensembles are always getting worse:

E[L@g)=>E|[L(Tx_1))

- Of course concave loss do not exist in real life, but this still gives us some insights about
what’s going on.

* Indeed, some losses are convex in some part of the prediction space, and convex in
another part. If our predictions mostly end up in the concave part, we can expect our
ensembles to get worse!
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Some nonconvex losses for binary classification

1.04 — sigmoid
—— spherical
084 — class. error
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Some nonconvex losses for binary classification

* The smooth losses are

1.04 Sigmoid convex when
—— spherical predictions are « right »
084 — class. error (above the purple
inflexion point) and
concave when they are
A~ 0.6
> « Wrong ».
3 A
0.4 /
0.2 -
0.0 -
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
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Some nonconvex losses for binary classification

* The smooth losses are

1.04 — sigmoid convex when
—— spherical predictions are « right »
084 — class. error (above the purple

inflexion point) and
0.6 concave when they are
> « wrong ».

N——" o
~ 0.4 -
:  The classification error

can be approximated by
0.2 - the sigmoid loss

0.0

0.0 0.2 0.4 0.6 0.8 1.0
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The sigmoid loss behaves roughly like the classification error

Good ensembles get better, bad ones get worse

0.03549 . . . . .
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Some

1.75 1
1.50 -
1.25
1.00 -
0.75
0.50
0.25

0.00

nonconvex losses for regression

Geman-McClure

Student’s t
Welsch

| |
—-40 -30 -20 -10 10 20 30 40

S O -

The smooth losses are
convex when
predictions are « right »
(above the purple
inflexion point) and
concave when they are
« Wrong ».

The classification error
can be approximated by
the sigmoid loss

Same insights for
regressions losses.
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Again, good ensembles get better, bad ones get worse for nonconvex losses
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— John Wick 2, |y — ¥so| &~ 28.85 > 10
— Ghost in the Shell, |y — ¥so| &~ 5.41 < 10
— Beauty and the Beast, |y — 70| ~ 14.92 > 10



We can formalise this!

Theorem. Let 11,...,yx € C be nondegenerate i.i.d. random variables
whose first 5 moments are finite, and L be a function with continuous and
bounded partial derivatives of order up to 5, with Hessian matrix H. Then
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We can formalise this!

Theorem. Let 11,...,yx € C be nondegenerate i.i.d. random variables
whose first 5 moments are finite, and L be a function with continuous and
bounded partial derivatives of order up to 5, with Hessian matrix H. Then

1. If H(y,,) = 0, then the ensemble is eventually getting better: for K large
enough,

E[L@g) <E|L(Txr_1)], (1)
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We can formalise this!

Theorem. Let 11,...,yx € C be nondegenerate i.i.d. random variables
whose first 5 moments are finite, and L be a function with continuous and
bounded partial derivatives of order up to 5, with Hessian matrix H. Then

1. If H(y,,) = 0, then the ensemble is eventually getting better: for K large
enough,

E[L@g) <E|LTxr_1)], (1)

2. If H(y,,) < 0, then the ensemble is eventually getting worse: for K large
enough,

E[L@g)>E|L(Tr_1)]- (2)
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We can formalise this!

Theorem. Let 11,...,yx € C be nondegenerate i.i.d. random variables
whose first 5 moments are finite, and L be a function with continuous and
bounded partial derivatives of order up to 5, with Hessian matrix H. Then

1. If H(y,,) = 0, then the ensemble is eventually getting better: for K large
enough,

E[L@g) <E|LTxr_1)], (1)

2. If H(y,,) < 0, then the ensemble is eventually getting worse: for K large
enough,

E[L@g)>E|L(Tr_1)]- (2)
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The proof essentially relies on a fourth order Taylor expansion of the loss.



What about the classification error?

« Smooth nonconvex losses are not that popular. The only truly popular nonconvex loss is the
classification error.
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What about the classification error?

« Smooth nonconvex losses are not that popular. The only truly popular nonconvex loss is the
classification error.

« Since the accuracy is well-approximated by the sigmoid loss, the previous result seems to
indicate that the accuracy will be increasing for points well classified, and decreasing for
points misclassified.

94



What about the classification error?

*  Smooth nonconvex losses are not that popular. The only truly popular nonconvex loss is
the classification error.

« Since the accuracy is well-approximated by the sigmoid loss, the previous result seems to
indicate that the accuracy will be increasing for points well classified, and decreasing for
points misclassified. In practice, we saw in the beginning that this was indeed the case
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Can we show the previous conjecture?

Surprisingly, things get very weird for the classification error.

We were looking for a quick and natural proof
» using the fact that the sigmoid approximates the classification error

» using the fact that the result is true if the §s are Gaussian and then use the central
limit theorem (or Berry-Esseen, or large deviations?)

Nothing worked. And for good reason. Indeed, we found that there is a very simple counter-
example that dates back to Condorcet (1785) !
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Condorcet’s counter-example for binary classification

* For binary classification when the true label is 0, the average error is just
E|L(yy)] = P(yx = 0.5)
-« Now, let g1, - , Uk ~ B(y.,)

- We would very like IE|L(%.)] to be decreasing if Yoo < 0.5 and increasing if J,, > 0.5
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Condorcet’s counter-example for binary classification

* For binary classification when the true label is 0, the average error is just

E|L(Y)| = P(yx 2 0.5)

© Now,let g1, -+, Ik ~ B(Joo)

- We would very like IE|L(%.)] to be decreasing if Yoo < 0.5 and increasing if J,, > 0.5

but...

Non-monotonicity seems to be
there because of the potential
ties, ie when - = 0.9
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y.. = 0.4
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We did manage to do something!

Let 91,...,9x € R"C! be 1.i.d. random variables. Then

1. If the prediction is asymptotically correct (Weird assumption 1), then the
ensemble is eventually getting better: for K large enough,

E[L#g)] <E|L(Tx_1)], (1)

2. If the prediction is asymptotically completely incorrect (Weird assumption
2), then the ensemble is eventually getting better: for K large enough,

E[L(Hk)] > E[L Tk )] (2)

Proof idea: use strong large deviation theorems: Bahadur-Ranga Rao-Petrov
for binary classification and Joutard for multiclass.
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Our basic (kinda new) tool

Theorem 1 (monotonicity of tail probabilities, univariate) Let Xi,...,X,
be i.1.d. random variables with finite expectation u, and let € > 0. Assume fur-
thermore that

1. E [etXl} < 400 for allt € R;
2. P(X1>p+¢€e) >0;
3. X1 1s absolutely continuous with respect to the Lebesque measure;
or, alternatively to (3),
(3bis) X1 is a lattice random variable and P (X1 = p+¢€) > 0.

Then, P (Yn > 1+ 8) and P (Yn >+ 5) are both strictly decreasing for all n
large enough.
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Similar result in the multivariate case but much more complicated...



Conclusion

From a practical perspective, our results strengthen and confirm the message of Probst and
Boulesteix: ensemble size should not be tuned, and ensembles should be as large as
possible.

This work was solely about the « pure variance reduction effect » of generic ensembles.
Of course, this is a very small part of the story

Theoretical work on specific kinds of ensembles is also very important
» Scornet and Hooker, Theory of Random Forests: A Review, HAL-05006431, 2025

> Wild et al., A Rigorous Link between Deep Ensembles and (Variational) Bayesian
Methods, NeurlPS 2023

» Hron et al., Variational BayesiaVariational Bayesian dropout: pitfalls and fixes, ICML
2023
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