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A short introduction to deep learning
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Connections with nonparametric mixtures
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But actually, what is deep learning?

Deep learning is a general framework for function approximation.

It uses parametric approximators called neural networks, which are compositions of
some tunable affine functions f1, ..., fL with a simple fixed nonlinear function σ:

F(x) = f1 ◦ σ ◦ f2 ◦ ... ◦ σ ◦ fL(x)

These functions are called layers. The nonlinearity σ is usually called the activation
function.

The derivatives of F with respect to the tunable parameters can be computed using the
chain rule via the backpropagation algorithm.
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A glimpse at the zoology of layers
The simplest kind of affine layer is called a fully connected layer:

fl(x) = Wlx + bl,

where Wl and bl are tunable parameters.

The activation function σ is usually a univariate fixed function applied elementwise.
Here are two popular choices:
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Why is it convenient to compose affine functions?

• Neural nets are powerful approximators: any continuous function can be
arbitrarily well approximated on a compact using a three-layer fully connected
network F = f1 ◦ σ ◦ f2 (universal approximation theorem, Leshno et al., 1993). The
conditions are that σ is not a polynomial and that the network can be arbitrarily
wide.

• There are similar results for very thin but arbitrarily deep networks (Lin & Jegelka,
2018).

• Some prior knowledge can be distilled into the architecture (i.e. the type of affine
functions/activations) of the network. For example, convolutional neural networks
(CNNs, LeCun et al., 1989) leverage the fact that local information plays an important
role in images/sound/sequence data. In that case, the affine functions are convolution
operators with some learnt filters.



5

Why is it convenient to compose affine functions?

• Neural nets are powerful approximators: any continuous function can be
arbitrarily well approximated on a compact using a three-layer fully connected
network F = f1 ◦ σ ◦ f2 (universal approximation theorem, Leshno et al., 1993). The
conditions are that σ is not a polynomial and that the network can be arbitrarily
wide.

• There are similar results for very thin but arbitrarily deep networks (Lin & Jegelka,
2018).

• Some prior knowledge can be distilled into the architecture (i.e. the type of affine
functions/activations) of the network. For example, convolutional neural networks
(CNNs, LeCun et al., 1989) leverage the fact that local information plays an important
role in images/sound/sequence data. In that case, the affine functions are convolution
operators with some learnt filters.



5

Why is it convenient to compose affine functions?

• Neural nets are powerful approximators: any continuous function can be
arbitrarily well approximated on a compact using a three-layer fully connected
network F = f1 ◦ σ ◦ f2 (universal approximation theorem, Leshno et al., 1993). The
conditions are that σ is not a polynomial and that the network can be arbitrarily
wide.

• There are similar results for very thin but arbitrarily deep networks (Lin & Jegelka,
2018).

• Some prior knowledge can be distilled into the architecture (i.e. the type of affine
functions/activations) of the network. For example, convolutional neural networks
(CNNs, LeCun et al., 1989) leverage the fact that local information plays an important
role in images/sound/sequence data. In that case, the affine functions are convolution
operators with some learnt filters.



6

Why is it convenient to compose affine functions?

• Often, this prior knowledge can be based on known symmetries, leading to deep
architectures that are equivariant or invariant to the action of some group (see
e.g. the work of Taco Cohen or Stéphane Mallat). This is useful when dealing with
images, sound, molecules...

• The layers can capture hierarchical representations of the data, sometimes
(almost) explicitely (e.g. the capsules of Hinton et al., 2018).

• When the neural network parametrises a regression function, empirical evidence
shows that adding more layers leads to better out-of-sample behaviour. Roughly,
this means that adding more layers is a way of increasing the complexity of statistical
models without paying a large overfitting price: there is a regularisation-by-depth
effect.
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A simple example: nonlinear regression with a multilayer
perceptron (MLP)

We want to perform regression on a data set

(x1, y1), ..., (xn, yn) ∈ Rp × R.

We can model the regression function using a multilayer perceptron (MLP): two
connected layers with an hyperbolic tangent in-between:

∀i ≤ n, yi = F(xi) + εi = W1tanh(W0xi + b0) + b1 + εi.

The coordinates of the intermediate representation W0xi + b0 are called hidden units.

If we assume that the noise is Gaussian, then we can find the maximum likelihood
estimates of W1,W0,b1,b0 by minimising the squared error using gradient descent.
Gradients are computed via backpropagation.
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A simple example: nonlinear regression with a multilayer
perceptron (MLP)

∀i ≤ n, yi = F(xi) + εi = W1tanh(W0xi + b0) + b1 + εi,

Let’s try to recover the function sin(x)/x using 20 samples:

5 hidden units

0.0

0.4

0.8

−10 0 10

20 hidden units

0.0

0.4

0.8

−10 0 10



9

Overview of talk

A short introduction to deep learning

Deep latent variable models

Approximate maximum likelihood for DLVMs

Connections with nonparametric mixtures

Handling missing data in DLVMs



10

Continuous latent variable models

Let’s start with some i.i.d. data x1, ..., xn ∈ X .

A generative model p(x) “describes a process that is assumed to give rise to some data”
(D. MacKay).

In a continuous latent variable model we assume that there is an unobserved random
variable z ∈ Rd. Usually, d is smaller than the dimensionality of the data, and we can think
of z as a code summarizing multivariate data x.

A classic example: factor analysis. The generative process is:
• z ∼ N (0, Id),

• x|z ∼ N (Wz + µ,Ψ).
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Deep latent variable models (DLVMs)

Deep latent variable models combine the approximation abilities of deep neural
networks and the statistical foundations of generative models.

Independently invented by Kingma and Welling (2014) as variational autoencoders
(VAEs), and Rezende, Mohamed, and Wierstra (2014) as deep latent Gaussian models.

Also very close to generative adversarial networks (GANs, Goodfellow et al., 2014)
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Deep latent variable models (DLVMs)
(Kingma and Welling, 2014, Rezende, Mohamed & Wierstra (2014))

Assume that (xi, zi)i≤n are i.i.d. random variables driven by the model:{
z ∼ p(z) (prior)
x ∼ pθ(x | z)

= Φ(x | fθ(z))

(observation model)

z

x

θ

n

where
• z ∈ Rd is the latent variable,

• x ∈ X is the observed variable.

• the function fθ : Rd → H is a (deep) neural network called the decoder

• (Φ(· | η))η∈H is a parametric family called the observation model, usually very
simple: unimodal and fully factorised (e.g. multivariate Gaussians or products of
multinomials)
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The role of the prior

As in regular factor analysis, the prior distribution of the latent variable is often an
isotropic Gaussian p(z) = N (z|0d, Id).

More complex, learnable priors have also been considered. For example, in Harchaoui et
al. (2018), we looked into mixtures of K Gaussians:

p(z) =

K∑
k=1

πkN (z|µk,Σk),

where the parameters π1, ..., πK ,µ1, ...,µK ,Σ1, ...ΣK are learned.

Beyond the fact that this prior is more general, it leads to a DLVM that’s fit for clustering
purposes.
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The role of the observation model

The observation model (Φ(· | η))η∈H usually very simple: unimodal and fully factorised
(e.g. multivariate Gaussians or products of multinomials)

Its parameters are the output of the decoder.{
z ∼ p(z) (prior)
x ∼ pθ(x | z)= N (x | µθ(z),Σθ(z)) (Gaussian observation model)

{
z ∼ p(z) (prior)
x ∼ pθ(x | z)= B(x | πθ(z)) (Bernoulli observation model)

{
z ∼ p(z) (prior)
x ∼ pθ(x | z)= St(x | µθ(z),Σθ(z),νθ(z)) (Student’s t observation model)
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The role of the decoder
The role of the decoder fθ : Rd → H is:

• to transform z (the code) into parameters η = fθ(z) of the observation model Φ(· | η).
• The weights θ of the decoder are learned.

Simple non-linear decoder (d = 1, p = 2): fθ(z) = µθ(z),Σθ(z) with, for all z ∈ R,

µθ(z) =
(
10 sin(z)3, 10 cos(z)− 10 cos(z)4) , Σθ(z) = Diag

((
sin(z)

3z

)2

,

(
sin(z)

z

)2
)
.
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DLVMs applications: density estimation on MNIST
Rezende, Mohamed & Wierstra (2014)

Training data Model samples
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DLVMs applications: clustering on MNIST
Harchaoui, Mattei, Bouveyron & Almansa (2018)
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DLVMs applications: Data imputation
Rezende, Mohamed & Wierstra (2014)
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DLVMs applications: Data imputation
Mattei & Frellsen (2019)
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DLVMs applications: Molecular design
Kusner, Paige, and Hernàndez-Lobato (2017)
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DLVMs applications: Reinforcement learning
Ha & Schmidhuber (2018)


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





22

DLVMs applications: Reinforcement learning
Ha & Schmidhuber (2018)
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Learning DLVMs
Kingma & Welling (2014), Rezende et al. (2014)

Given a data matrix X = (x1, . . . , xn)ᵀ ∈ X n, the log-likelihood function for a DLVM is

`(θ) = log pθ(X) =

n∑
i=1

log pθ(xi),

where
pθ(xi) =

∫
Rd

pθ(xi | z)p(z)z.

We would like to find a MLE θ̂ ∈ argmaxθ `(θ).

However, even with a simple output density pθ(x | z)

:

• pθ(x) is intractable rendering MLE intractable

• pθ(z | x) is intractable rendering EM intractable

• stochastic EM is not scalable to large n and moderate d.
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The solution: amortised variational inference

A general and scalable framework to tackle these issues was proposed by Kingma &
Welling (2014), Rezende et al. (2014), leading to the variational autoencoder (VAE).

Here, I am going to derive this approach in a slightly different manner, largely
inspired by the following paper:

Burda, Grosse & Salakhutdinov (2016), Importance weighted autoencoders, ICLR 2016

The main idea is to use Monte Carlo techniques to approximate the intractable integrals

pθ(xi) =

∫
Rd

pθ(xi | z)p(z)dz.
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Aparté: Monte Carlo and importance sampling

Let’s say we want to estimate an integral of the form

I =

∫
Ω

f (x)p(x)dx,

where f ≥ 0 and p is a density over a space Ω.

Simple Monte Carlo estimate: We sample x1, ..., .xK ∼ p and approximate

I ≈ 1
K

K∑
k=1

f (xk) = ÎK .

A few properties:

ÎK
a.s.→ I, E[̂IK ] = I, V[̂IK ] =

1
K
V[f (x1)],

which sounds nice, but the variance may be very large.
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Aparté: Monte Carlo and importance sampling

Importance sampling tries to improve this estimate by sampling x1, ..., .xK from another
density q rather than p. The trick is the following:

I =

∫
Ω

f (x)p(x)dx

=

∫
Ω

f (x)p(x)

q(x)
q(x)dx ≈ 1

K

K∑
k=1

f (xk)p(xk)

q(xk)
= Îq

K .

As before, the estimate is consistent and unbiased (under the condition that q has
heavier tails than p). What about the variance?

If we choose q∗(x) ∝ f (x)p(x), which means q∗(x) = f (x)p(x)/I, then Îq∗

K has zero
variance! But we can’t do that because we don’t know I...

However, this still means that importance sampling with a good q will work much
better than simple MC.
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Back to DLVMs and their likelihood

We want to approximate

pθ(xi) =

∫
Rd

pθ(xi | z)p(z)z.

Idea: use importance sampling! Let zi1, ..., ziK follow some proposal qi:∫
Rd

pθ(xi | z)p(zik)dz ≈ 1
K

K∑
k=1

pθ(xi | zik)p(z)

qi(zik)

Let’s say that we want to choose our proposal in a parametric family (Ψ(·|κ))κ∈K over
Rd (e.g. Gaussians).

Problem: we need to choose n proposals q1, ..., qn (and n is usually large in deep
learning...).

Exercise: What would be the optimal, zero-variance choices for q1, ..., qn?



28

Back to DLVMs and their likelihood

We want to approximate

pθ(xi) =

∫
Rd

pθ(xi | z)p(z)z.

Idea: use importance sampling! Let zi1, ..., ziK follow some proposal qi:∫
Rd

pθ(xi | z)p(zik)dz ≈ 1
K

K∑
k=1

pθ(xi | zik)p(z)

qi(zik)

Let’s say that we want to choose our proposal in a parametric family (Ψ(·|κ))κ∈K over
Rd (e.g. Gaussians).

Problem: we need to choose n proposals q1, ..., qn (and n is usually large in deep
learning...).

Exercise: What would be the optimal, zero-variance choices for q1, ..., qn?



28

Back to DLVMs and their likelihood

We want to approximate

pθ(xi) =

∫
Rd

pθ(xi | z)p(z)z.

Idea: use importance sampling! Let zi1, ..., ziK follow some proposal qi:∫
Rd

pθ(xi | z)p(zik)dz ≈ 1
K

K∑
k=1

pθ(xi | zik)p(z)

qi(zik)

Let’s say that we want to choose our proposal in a parametric family (Ψ(·|κ))κ∈K over
Rd (e.g. Gaussians).

Problem: we need to choose n proposals q1, ..., qn (and n is usually large in deep
learning...).

Exercise: What would be the optimal, zero-variance choices for q1, ..., qn?



28

Back to DLVMs and their likelihood

We want to approximate

pθ(xi) =

∫
Rd

pθ(xi | z)p(z)z.

Idea: use importance sampling! Let zi1, ..., ziK follow some proposal qi:∫
Rd

pθ(xi | z)p(zik)dz ≈ 1
K

K∑
k=1

pθ(xi | zik)p(z)

qi(zik)

Let’s say that we want to choose our proposal in a parametric family (Ψ(·|κ))κ∈K over
Rd (e.g. Gaussians).

Problem: we need to choose n proposals q1, ..., qn (and n is usually large in deep
learning...).

Exercise: What would be the optimal, zero-variance choices for q1, ..., qn?



28

Back to DLVMs and their likelihood

We want to approximate

pθ(xi) =

∫
Rd

pθ(xi | z)p(z)z.

Idea: use importance sampling! Let zi1, ..., ziK follow some proposal qi:∫
Rd

pθ(xi | z)p(zik)dz ≈ 1
K

K∑
k=1

pθ(xi | zik)p(z)

qi(zik)

Let’s say that we want to choose our proposal in a parametric family (Ψ(·|κ))κ∈K over
Rd (e.g. Gaussians).

Problem: we need to choose n proposals q1, ..., qn (and n is usually large in deep
learning...).

Exercise: What would be the optimal, zero-variance choices for q1, ..., qn?



29

Amortised variational inference

A solution: Amortised variational inference, all the qi will be defined together via a
neural net!

Rationale: qi needs to depends on xi, so we’ll define it as a conditional distribution
parametrised by γ:

qi(z) = qγ(z|xi).

How to parametrise this conditional distribution? The key idea is that its parameters are
the output of a neural net gγ:

qγ(z|xi) = Ψ(z|gγ(xi)).

This neural net is called the inference network or encoder.
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Amortised variational inference

All of this leads to the following approximation of the likelihood

`(θ) ≈
n∑

i=1

Ezi1,...,ziK∼qγ(z|xi)

[
log

1
K

K∑
k=1

pθ(xi|zik)p(zik)

qγ(zik|xi)

]
= LK(θ, γ).

Rather than maximising `(θ), we’ll maximise LK(θ, γ) using SGD and the
reparametrisation trick. But does it make sense to do that?

It does make sense! For several reasons:
• LK(θ, γ) is a lower bound of `(θ) (exercise !)
• The bounds get tighter and tighter!

L1(θ,γ) ≤ L2(θ,γ) ≤ . . . ≤ LK(θ,γ) −−−−→
K→∞

`(θ).

LK(θ, γ) is called the importance weighted autoencoder (IWAE) bound, and was
introduced by Burda et al. (2016).
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What about the VAE?

The VAE bound of Kingma & Welling (2014) and Rezende et al. (2014) is actually
L1(θ, γ), which is the loosest bound!

The VAE bound can be interestingly rewritten

L1(θ,γ) = `(θ)− KL

(
n∏

i=1

qγ(zi|xi)
∣∣∣∣∣∣ n∏

i=1

pθ(zi|xi)

)
.

which means that, for a given θ, the optimal qγ(zi|xi) will be as close as possible (in a
KL sense) to the true posterior pθ(zi|xi).

Concrete consequence: after training, we may interpret the qγ(zi|xi) as an
(approachable) approximation of the (intractable) pθ(zi|xi).

Is it still true when K > 1? Kind of, but it gets more complicated. Domke & Sheldon
(2019) showed that, when K →∞, the the "closeness" is no longer in KL sense but in the
sense of the χ divergence.
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Let’s summarise

DLVMs are flexible latent variable models that transform low-dimensional codes z into
parameters of a simple observation model.

{
z ∼ p(z) (prior)
x ∼ pθ(x | z)= Φ(x | fθ(z)) (observation model)

z

x

θ

n

Training is performed by maximising a lower bound LK(θ, qγ) of the likelihood using
stochastic gradient descent (SGD). This utilises a variational approximation qγ(z | x) of the
posterior distribution pθ(z | x) of the codes.
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A few (semi-open) questions about maximum likelihood for
DLVMs

• We do not maximise the actual likelihood but a lower-bound: does it make
sense? Is the bound tight?

• How to perform SGD on such lower bounds?
• Was it sensible to maximise the likelihood in the first place?

A few very recent papers tried to address these questions, and contained quite related
results:

Dai, Wang, Aston, Hua, and Wipf, Connections with Robust PCA and the Role of Emergent Sparsity in Variational
Autoencoder Models, JMLR 2018

Mattei & Frellsen, Leveraging the Exact Likelihood of Deep Latent Variable Models, NeurIPS 2018

Rezende & Viola, Taming VAEs, arXiv:1810.00597, 2018
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Does it make sense to maximise lower bounds?

The bounds can be viewed as regularised versions of the likelihood. In some very
simple settings, Dai et al. (2018) show that this regularisation is directly linked to robust
PCA (à la Candès et al., 2009).

Dai, Wang, Aston, Hua, and Wipf, Connections with Robust PCA and the Role of Emergent Sparsity in Variational
Autoencoder Models, JMLR 2018
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How to perform SGD on such lower bounds?

The usual bound is

L(θ, qγ) =

n∑
i=1

Ezi1,...,ziK∼qγ(z|xi)

[
log

1
K

K∑
k=1

pθ(xi|zik)p(zik)

qγ(zik|xi)

]

Low-variance estimates of gradients of L(θ, qγ) can be found using reparametrisation
tricks for a wide variety of choices for the variational family. A nice overview of those tricks
is provided in this paper:

Figurnov, Mohamed, and Mnih, Implicit Reparameterization Gradients, NeurIPS 2018
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Was it sensible to maximise the likelihood in the first place?

If we see the prior as a mixing distribution, DLVMs are continuous mixtures of
distribution from the observation model:

pθ(x) =

∫
Rd

pθ(x|z)p(z)dz =

∫
Rd

Φ(x|fθ(z))p(z)dz.

But maximum likelihood for finite Gaussian mixtures is ill-posed: the likelihood function
is unbounded and the parameters with infinite likelihood are pretty terrible.

“Mixtures, like tequila, are inherently evil and should be avoided at all costs” – Larry
Wasserman

Hence the question: Is maximum likelihood well-posed for DLVMs?

No. We showed that the problem was pretty much the same as with finite mixtures.
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On the boundedness of the likelihood of DLVMs
Mattei & Frellsen (2018)

Consider a DLVM with a p-variate Gaussian observation model where

`(θ) =

n∑
i=1

log

∫
Rd
N (x|µθ(z),Σθ(z))p(z)z.

Like Kingma and Welling (2014), consider a MLP decoder with h ∈ N∗ hidden units of the form

µθ(z) = V tanh(Wz + a) + b

µ
θ
(i,w)
k

(z) = xi

Σθ(z) = exp(αᵀ tanh(Wz + a) + β)Ip

Σ
θ
(i,w)
k

(z) = exp(αk tanh(αkwᵀz)− αk)Ip

where θ = (W, a,V,b,α, β).

Now consider a subfamily with h = 1 and

θ
(i,w)
k = (αkwᵀ, 0, 0, xi, αk,−αk),

where (αk)k≥1 is a nonnegative real sequence

αk →∞ as k→∞.

Image from http://deeplearning.net/tutorial/mlp.html

http://deeplearning.net/tutorial/mlp.html
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On the boundedness of the likelihood of DLVMs
Mattei & Frellsen (2018)

Consider a DLVM with a p-variate Gaussian observation model where

`(θ) =

n∑
i=1

log

∫
Rd
N (x|µθ(z),Σθ(z))p(z)z.

Like Kingma and Welling (2014), consider a MLP decoder with h ∈ N∗ hidden units of the form

µθ(z) = V tanh(Wz + a) + b µ
θ
(i,w)
k

(z) = xi

Σθ(z) = exp(αᵀ tanh(Wz + a) + β)Ip Σ
θ
(i,w)
k

(z) = exp(αk tanh(αkwᵀz)− αk)Ip
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θ
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k = (αkwᵀ, 0, 0, xi, αk,−αk),
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αk →∞ as k→∞.
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http://deeplearning.net/tutorial/mlp.html
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ML is ill-posed for a general Gaussian DLVM
Mattei & Frellsen (2018)

Theorem
For all i ∈ {1, . . . , n} and w ∈ Rd \ {0}, we have that limk→∞ `

(
θ

(i,w)
k

)
=∞.

Proof main idea: the contribution log p
θ
(i,w)
k

(xi) of the i-th observation explodes while all
other contributions remain bounded below.

Do these infinite suprema lead to useful generative models?

Proposition

For all k ∈ N∗, i ∈ {1, . . . , n} and w ∈ Rd \ {0}, the distribution p
θ
(i,w)
k

(xi) is is spherically
symmetric and unimodal around xi.

No, because of the constant mean function.

What about other parametrisations?
• The used MLP is a subfamily.
• Universal approximation abilities of neural networks.



38

ML is ill-posed for a general Gaussian DLVM
Mattei & Frellsen (2018)

Theorem
For all i ∈ {1, . . . , n} and w ∈ Rd \ {0}, we have that limk→∞ `

(
θ

(i,w)
k

)
=∞.

Proof main idea: the contribution log p
θ
(i,w)
k

(xi) of the i-th observation explodes while all
other contributions remain bounded below.

Do these infinite suprema lead to useful generative models?

Proposition

For all k ∈ N∗, i ∈ {1, . . . , n} and w ∈ Rd \ {0}, the distribution p
θ
(i,w)
k

(xi) is is spherically
symmetric and unimodal around xi.

No, because of the constant mean function.

What about other parametrisations?
• The used MLP is a subfamily.
• Universal approximation abilities of neural networks.



38

ML is ill-posed for a general Gaussian DLVM
Mattei & Frellsen (2018)

Theorem
For all i ∈ {1, . . . , n} and w ∈ Rd \ {0}, we have that limk→∞ `

(
θ

(i,w)
k

)
=∞.

Proof main idea: the contribution log p
θ
(i,w)
k

(xi) of the i-th observation explodes while all
other contributions remain bounded below.

Do these infinite suprema lead to useful generative models?

Proposition

For all k ∈ N∗, i ∈ {1, . . . , n} and w ∈ Rd \ {0}, the distribution p
θ
(i,w)
k

(xi) is is spherically
symmetric and unimodal around xi.

No, because of the constant mean function.

What about other parametrisations?
• The used MLP is a subfamily.
• Universal approximation abilities of neural networks.



39

Tackling the unboundedness of the likelihood
Mattei & Frellsen (2018)

Proposition

Let ξ > 0. If the parametrisation of the decoder is such that the image of Σθ is included in

Sξp = {A ∈ S+
p |min(Sp A) ≥ ξ}

for all θ, then the log-likelihood function is upper bounded by −np log
√
πξ

Note: Such constraints can be implemented by added ξIp to Σθ(z).
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Discrete DLVMs do not suffer from unbounded likelihood

When X = {0, 1}p, Bernoulli DLVMs assume that (Φ(·|η))η∈H is the family of p-variate
multivariate Bernoulli distribution (that is, the family of products of p univariate Bernoulli
distributions). In this case, maximum likelihood is well-posed.

Proposition

Given any possible parametrisation, the log-likelihood function of a deep latent model a
Bernoulli observation model is everywhere negative.

Take-home message

Always regularise when you deal with continuous data!
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Unboundedness for a DLVM with Gaussian observation model
for (Brendan) Frey faces
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Overview of talk

A short introduction to deep learning

Deep latent variable models

Approximate maximum likelihood for DLVMs

Connections with nonparametric mixtures

Handling missing data in DLVMs
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Towards data-dependent likelihood upper bounds

When maximum likelihood is well posed, we were able to derive very simple,
data-independent upper bound of the true likelihood.

Is is possible to derive tighter, data-dependent bounds? This would allow us to
sandwich the exact likelihood between a lower bound (the training objective), and an
upper bound.
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Towards data-dependent likelihood upper bounds
Mattei & Frellsen (2018)

We can interpret DLVM as parsimonious submodel of a nonparametric mixture model

pG(x) =

∫
H

Φ(x|η)G(η) `(G) =

n∑
i=1

log pG(xi).

• The model parameter is the mixing distribution G ∈ P, where P is the set of all
probability measures over parameter space H.

• This is a DLVM, when G is generatively defined by: z ∼ p(z); η = fθ(z).
• This is a finite mixture model, when G is has a finite support.

This generalisation bridges the gap between finite mixtures and DLVMs.
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Towards data-dependent likelihood upper bounds
Mattei & Frellsen (2018), Cremer et al. (2018)

This gives us an immediate upper bound on the
likelihood for any decoder fθ:

`(θ) ≤ max
G∈P

`(G)

Theorem
Assume that (Φ(· | η))η∈H is the family of multivariate
Bernoulli distributions or Gaussian distributions with the
spectral constraint. The likelihood of the nonparametric
mixture model is maximised for a finite mixture model
of k ≤ n distributions from the family (Φ(· | η))η∈H.

`(✓)

`(Ĝ)

ELBO(✓, q⇤X)

ELBO(✓, q�,X)

parsimony gap
tight when f✓ has large capacity

tight when g� has large capacity

amortisation gap

approximation gap
tight when the posterior belongs

to the variational family
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Towards data-dependent likelihood upper bounds
Mattei & Frellsen (2018)

Theorem (Tightness of the parsimony gap)

Assume that
1. (Φ(·|η))η∈H is a constrained Gaussian or a Bernoulli observation model.
2. The decoder has universal approximation abilities : for any compact C ∈ Rd and
continuous function f : C→ H, for all ε > 0, there exists θ such that ||f − fθ||∞ < ε.

Then, for all ε > 0, there exists θ ∈ Θ such that `(Ĝ) ≥ `(θ) ≥ `(Ĝ)− ε.

Proof main idea: split the code space into a compact set made of several parts that will
represent the mixture components, and an unbounded set of very small prior mass. The
universal approximation property is finally used for this compact set.

This means that the nonparametric upper bound Ĝ characterises the large capacity
limit of the decoder.

Take-home message

A DLVM with a very large decoder will behave like a big finite mixture.
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Data imputation with variational autoencoders
Rezende et al. (2014), Mattei & Frellsen (2018)

After training a couple encoder/decoder, we consider a new data point x = (xobs, xmiss).

In principle we can impute xmiss using

pθ(xmiss | xobs) =

∫
Rd

Φ(xmiss | xobs, fθ(z))p(z|xobs)z.

Since this integral is intractable, Rezende et
al. (2014) suggested using pseudo-Gibbs
sampling, by forming a Markov chain
(zt, x̂miss

t )t≥1

• zt ∼ Ψ(zi | gγ(xobs, x̂miss
t−1 ))

• x̂miss
t ∼ Φ(xmiss | xobs, fθ(z))p(zt)

z

x

θ

γ

n
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After training a couple encoder/decoder, we consider a new data point x = (xobs, xmiss).

In principle we can impute xmiss using

pθ(xmiss | xobs) =

∫
Rd

Φ(xmiss | xobs, fθ(z))p(z|xobs)z.

Since this integral is intractable, Rezende et
al. (2014) suggested using pseudo-Gibbs
sampling, by forming a Markov chain
(zt, x̂miss

t )t≥1

• zt ∼ Ψ(zi | gγ(xobs, x̂miss
t−1 ))

• x̂miss
t ∼ Φ(xmiss | xobs, fθ(z))p(zt)

We propose Metropolis-within-Gibbs:
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Comparing pseudo-Gibbs and Metropolis-within-Gibbs
Mattei & Frellsen (2018)
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Metropolis−within−Gibbs Pseudo−Gibbs (Rezende et al., 2014)

The F1 score is the harmonic mean of the precision and recall, F1 = ((recall−1 + precision−1)/2)−1 .
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What happens if the training set is incomplete?

Assume that some of the training are missing-at-random (MAR).

We can then split each sample i ∈ {1, . . . , n} into
• the observed features xo

i and
• the missing features xm

i .

Under the MAR assumption, the relevant quantity to maximise is the likelihood of the
observed data equal to

`o(θ) =

n∑
i=1

log pθ(xo
i ) =

n∑
i=1

log

∫
pθ(xo

i | z)p(z)z.

Direct MLE is intractable, but we can derive tractable tight lower bounds of `(θ).
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The missing data importance-weighted autoencoder (MIWAE) bound
Mattei & Frellsen (2019)

For the case of missing data, we propose the variational distribution

qγ(z|xo) = Ψ(z|gγ(ι(xo)),

where:
• The set (Ψ(·|κ))κ∈K is the variational family.
• The function gγ : X → K is the encoder.
• ι is an imputation function chosen beforehand that transforms xo into a complete

input vector ι(xo) ∈ X such that ι(xo)o = xo.

Following Burda et al. (2016), we can use the distribution qγ to build lower bounds of `o(θ)

Lo
K(θ, γ) =

n∑
i=1

Ezi1,...,ziK∼qγ(z|xo
i )

[
log

1
K

K∑
k=1

pθ(xo
i |zik)p(zik)

qγ(zik|xo
i )

]
.

Like before, we will have

Lo
1(θ,γ) ≤ Lo

2(θ,γ) ≤ . . . ≤ Lo
K(θ,γ) −−−−→

K→∞
`(θ).
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Imputation function
When K →∞, the bound is tight for any
imputation function ι

We showed that zero-imputation works fine!
It is also possible to use more complex,
learnable imputations.
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.

Like before, we will have

Lo
1(θ,γ) ≤ Lo

2(θ,γ) ≤ . . . ≤ Lo
K(θ,γ) −−−−→

K→∞
`(θ).

Imputation function
When K →∞, the bound is tight for any
imputation function ι

We showed that zero-imputation works fine!
It is also possible to use more complex,
learnable imputations.

MVAE bound
When K = 1, the bound resembles the VAE
bound and we call it MVAE.

This bound was independently derived
independently by Nazabal et al. (2018) in
concurrent work.
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Imputation with MIWAE
Mattei & Frellsen (2019)

For the single imputation problem an optimal decision-theoretic choice is

x̂m = E[xm|xo] =

∫
xmpθ(xm|xo)dxm =

∫∫
xmpθ(xm|xo, z)pθ(z|xo)dzdxm,

Exercise: Derive an estimate of E[xm|xo] using importance sampling.

Hint: There is a self-normalised version of importance sampling for cases where we
only know p up to a constant: ∫

Ω

f (x)p(x)dx ≈
K∑

k=1

wkf (xk),

where x1, ..., xK ∼ q and

wk =
rk

r1 + . . .+ rK
, with rk =

p̃(xk)

q(xk)
.
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Imputation with MIWAE
Mattei & Frellsen (2019)

For the single imputation problem an optimal decision-theoretic choice is

x̂m = E[xm|xo] =

∫
xmpθ(xm|xo)dxm =

∫∫
xmpθ(xm|xo, z)pθ(z|xo)dzdxm,

This is intractable, but can be estimated using self-normalised importance sampling
with the proposal distribution pθ(xm|xo, z)qγ(z|xo), leading to the estimate

E[xm|xo] ≈
L∑

l=1

wl xm
(l),

where (xm
(1), z(1)), . . . , (xm

(L), z(L)) are i.i.d. samples from pθ(xm|xo, z)qγ(z|xo) and

wl =
rl

r1 + . . .+ rL
, with rl =

pθ(xo|z(l))p(z(l))

qγ(z(l)|xo)
.

Here, we leverage the fact that qγ(z|xo) is a good approximation of pθ(z|xo).

Multiple imputation, i.e. sampling from pθ(xm|xo), can be done using sampling
importance resampling according to the weights wl for large L.
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Convolutional MIWAE on binary MNIST (50% MCAR pixels)
Mattei & Frellsen (2019)
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Estimated test log-likelihood of various models trained on binary MNIST as a function of the number
of training epochs. The MIWAE model was trained using K = 50 importance weights.
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Imputation on binary MNIST
Mattei & Frellsen (2019)

Single imputations (50% MCAR pixels):

Multiple imputations (non-MCAR but MAR scenario):

Random incomplete samples from the MNIST training data set, and the imputations
obtained by MIWAE (trained with K = 50 importance weights, and imputed with L = 10 000
importance weights)
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Another MAR but not MCAR experiment
Mattei & Frellsen (2019)

Single imputations :

Multiple imputations :
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Convolutional MIWAE on binary MNIST (50% MCAR pixels and a
MAR experiment)

MCAR

0.945

0.950

0.955

1 10 100 1000 10000

Number of importance weights

Im
p

u
ta

ti
o

n
 a

c
c
u

ra
c
y

MAR
0.910

0.915

0.920

1 10 100 1000 10000

Number of importance weights

missForest MIWAE MVAE



58

Classification of binary and incomplete MNIST (50% MCAR
pixels)
Mattei & Frellsen (2019)

To evaluate multiple imputation, we consider the task of classifying the incomplete
binary MNIST data set.

Test accuracy Test cross-entropy
Zero imp. 0.9739 (0.0018) 0.1003 (0.0092)
missForest imp. 0.9805 (0.0018) 0.0645 (0.0066)
MIWAE single imp. 0.9847 (0.0009) 0.0510 (0.0035)
MIWAE multiple imp. 0.9870 (0.0003) 0.0396 (0.0003)
Complete data 0.9866 (0.0007) 0.0464 (0.0026)

Test accuracy and cross-entropy obtained by training a convolutional network using the imputed
versions of the static binarisation of MNIST. The numbers are the mean of 10 repeated trainings with

different seeds and standard deviations are shown in brackets.
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Single imputation of UCI data sets (50% MCAR)

For all data sets we train DLVMs with the same general properties:
• Both encoder and decoder are multi-layer perceptrons with 3 hidden layers (128

hidden units) and tanh activations.
• Products of Student’s t for both the variational family and the observation model
• Same number of gradient steps (500 000) for all data sets, and no regularisation.

Banknote Breast Concrete Red White Yeast
MIWAE 0.446 (0.038) 0.280 (0.021) 0.501 (0.040) 0.643 (0.026) 0.735 (0.033) 0.964(0.057)
MVAE 0.593 (0.059) 0.318 (0.018) 0.587(0.026) 0.686 (0.120) 0.782 (0.018) 0.997 (0.064)
missForest 0.676 (0.040) 0.291 (0.026) 0.510 (0.11) 0.697 (0.050) 0.798 (0.019) 1.41 (0.02)
PCA 0.682 (0.016) 0.729 (0.068) 0.938 (0.033) 0.890 (0.033) 0.865 (0.024) 1.05(0.061)
kNN 0.744 (0.033) 0.831 (0.029) 0.962(0.034) 0.981 (0.037) 0.929 (0.025) 1.17 (0.048)
Mean 1.02 (0.032) 1.00 (0.04) 1.01 (0.035) 1.00 (0.03) 1.00 (0.02) 1.06 (0.052)

Mean-squared error for single imputation for various continuous UCI data sets
(mean and standard deviations over 5 randomly generated incomplete data sets).
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MIWAE tutorial

Let’s play a bit with MIWAE and impute some data sets!
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Summary

Take-home message

• DLVMs are flexible generative models.
• Showed how to train DLVM with missing data
• Obtained state-of-the-art performance in missing data imputation

Advertisment
Postdoc and PhD positions on deep generative models, and applications for
heterogeneous data, and network data, starting next spring, at INRIA Nice in the south
of France. Co-supervised by Charles Bouveyron (INRIA Nice and Université Cote d’Azur)
and Pierre Latouche (Université de Paris).

Thank you for your attention
−20

−10

0

−10 −5 0 5 10



61

Summary

Take-home message

• DLVMs are flexible generative models.
• Showed how to train DLVM with missing data
• Obtained state-of-the-art performance in missing data imputation

Advertisment
Postdoc and PhD positions on deep generative models, and applications for
heterogeneous data, and network data, starting next spring, at INRIA Nice in the south
of France. Co-supervised by Charles Bouveyron (INRIA Nice and Université Cote d’Azur)
and Pierre Latouche (Université de Paris).

Thank you for your attention
−20

−10

0

−10 −5 0 5 10


	A short introduction to deep learning
	Deep latent variable models
	Approximate maximum likelihood for DLVMs
	Connections with nonparametric mixtures
	Handling missing data in DLVMs

	fd@rm@0: 
	fd@rm@1: 


